現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:應用寬能隙元件之半無橋式功率因數修正器 [以論文名稱查詢館藏系統]
論文英文名稱:Design and Implementation of a Semi-Bridgeless Power Factor Corrector with Wide Bandgap Devices [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:電機工程系電力電子產業碩士專班
畢業學年度:107
畢業學期:第一學期
出版年度:107
中文姓名:林佳鴻
英文姓名:Jia-Hong Lin
研究生學號:105E08008
學位類別:碩士
語文別:中文
口試日期:2018/11/03
論文頁數:93
指導教授中文名:歐勝源
口試委員中文名:賴炎生;王見銘;唐丞譽;歐勝源
中文關鍵詞:寬能隙元件氮化鎵碳化矽半無橋式功率因數修正器數位控制
英文關鍵詞:Wide Bandgap DeviceGaNSiCSemi-Bridgeless Power Factor CorrectorDigital Control
論文中文摘要:本論文之目的為應用寬能隙元件研製一台數位控制半無橋式功率因數修正器,利用寬能隙元件之特性主要是用以提升切換頻率,縮小所需電感之體積,控制方法則使用平均電流控制法,使輸入電源電流波形追隨輸入電源電壓波形,改善功率因數,並設計數位控制器以穩定輸出電壓。相較於傳統有橋式功率因數修正器,半無橋式功率因數修正器之電流路徑上半導體元件較少,因此電路效率可以獲得提升,更適合利用在較高功率的場合中;此外,半無橋式功率因數修正器還具有低共模雜訊的特點。
本論文以德州儀器所生產的微控制器TMS320F28035為控制核心,以實現平均電流控制法並達成功率因數修正之目的,藉以驗證所提之電路設計理論;其中實驗規格為輸入電源電壓AC 110V至AC 220V、輸出電壓DC 400V、最大輸出功率600W且切換頻率200kHz,所研製的半無橋式功率因數修正器最高效率可達98.6%,滿載情況下功率因數可達0.99以上,並符合IEC61000-3-2 Class D的規範。
論文英文摘要:The main purpose of this thesis is to design and implement a semi-bridgeless power factor corrector (PFC) by using wide bandgap device. The characteristics of wide bandgap device is utilized to increase the switching frequency and the volume of the required inductor is reduced. This thesis uses the average current control method to make the source current can trace source voltage to improve the power factor and stabilize the output voltage.
Compared to the traditional power factor correctors, the number of the semiconductor components in the current path of the semi-bridgeless PFC is less, therefore the circuit efficiency can be improved, and it is more suitable for high power applications. In addition, the semi-bridgeless PFC has lower common mode noise feature.
In this thesis, the microcontroller TMS320F28035 produced by Texas Instruments is used as the control core to achieve power factor correction by the average current control method, and associated with the implemented power stage circuit to verify the proposed circuit design theory. The experimental specifications include the input source voltage range changes from AC 110V to AC 220V, the output voltage is DC 400V, the maximum output power is 600W and the switching frequency is 200kHz. In experiments, the maximum efficiency is up to 98.6%, the power factor is up to 0.99 at full load condition, and the harmonic currents meet IEC61000-3-2 Class D standard.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 寬能隙元件介紹 3
1.2.1 氮化鎵電晶體介紹 4
1.2.2 碳化矽蕭特基二極體介紹 8
1.2.3 寬能隙元件與矽元件損失分析與比較 9
1.3 研究內容 13
1.4 內容大綱 14
第二章 功率因數修正器介紹 15
2.1 功率因數的定義 15
2.2 無橋式功率因數修正器種類介紹 20
2.2.1 單開關標準式功率因數修正器 20
2.2.2 無橋式功率因數修正器 22
2.2.3 半無橋式功率因數修正器 24
2.2.4 雙向開關之無橋式功率因數修正器 26
2.2.5 圖騰柱無橋式功率因數修正器 29
2.2.6 擬圖騰柱無橋式功率因數修正器 31
2.2.7 無橋式功率因數修正器種類總結與比較 33
2.3 功率因數修正器控制法介紹 34
2.3.1 連續電流模式 35
2.3.2 不連續電流模式 40
2.3.3 臨界電流模式 41
第三章 半無橋式功率因數修正器原理分析 43
3.1 半無橋式功率因數修正器動作原理 43
3.2 半無橋式功率因數修正器小訊號分析 46
第四章 實驗系統設計 53
4.1 半無橋式功率因數修正器主電路設計 54
4.1.1 電感器設計 54
4.1.2 電容器設計 57
4.1.3 功率開關選擇 58
4.1.4 功率二極體選擇 59
4.2 硬體控制電路設計與介紹 59
4.2.1 輸入電源電壓偵測電路 59
4.2.2 輸入電流偵測電路 62
4.2.3 輸出電壓偵測電路 63
4.2.4 功率開關驅動電路 64
4.3 數位控制器設計與介紹 65
4.3.1 控制器設計 66
4.3.2 程式設計流程 71
第五章 實驗結果 72
5.1 模擬波形 73
5.2 實測波形 79
5.3 實驗數據 85
第六章 結論與未來展望 89
6.1 結論 89
6.2 未來展望 89
參考文獻 91
論文參考文獻:[1] M. Barnes, D. V. Hertem, S. P. Teeuwsen and M. Callavik, “HVDC System in Smart Grids,” Proceedings of the IEEE, vol.105, no.11, pp. 2082-2098, Nov 2017.
[2] D. W. Hart and Annotated by S. Y. Ou, Power. Electronics, 1nd ed., McGraw-Hill Publishers, 2011.
[3] R. W. Erickson and D. Maksimovic, Fundamentals of Rower Electronics, 2nd ed., Kluwer Academic Publishers, 2001.
[4] 蔡林亞,數位切換式電源的研製,碩士論文,國立臺北科技大學電機工程系,2016。
[5] S. Y. Ou, C. Y. Tang and Z. J. Chen, “Design and Implementation of a ZCS-PWM Half-Bridge Boost Rectifier with Output Voltage Balance Control,” IEEE Transactions on Industrial Electronics, vol.59, no.12, pp. 4646-4656, Dec 2012.
[6] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008.
[7] 劉建隆,數位無橋式功率因數修正器的研製,碩士論文,國立臺北科技大學電機工程系,2016。
[8] 黃智方,張庭輔(2014年6月)。氮化鎵功率元件簡介,電子資訊,第20卷,第1期,頁數:30-40。
[9] A. Lidow, J. Strydom, M. D. Rooij, and D. Reusch, GaN Transistors for Efficient Power Conversion, 2nd ed., John Wiley & Sons, 2014.
[10] TP65H050WS, Datasheet, Transphorm, 2018.
[11] EPC, Application Note: AN002, “Fundamental of Gallium Nitride Power Transistor,” 2011.
[12] LMG3410R070, Datasheet, Texas Instruments, 2018.
[13] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka and D. Ueda, “Gate Injection Transistor (GIT)-A Normally-Off AlGaN/GaN Power Transistor using Conductivity Modulation,” IEEE Transactions on Electron Devices, vol. 54, no. 12, pp. 3393-3399, Dec. 2007.
[14] Y. Cai, Y. Zhou, K. M. Lau and K. J. Chen, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode,” IEEE Transactions on Electron Devices, vol. 53, no. 9, pp. 2207-2215, Sep. 2006.
[15] Q. Zhou, Y. Yang, K. Hu, R. Zhu, W. Chen and B. Zhang, “Device Technologies of GaN-on-Si for Power Electronics: Enhancement-Mode Hybrid MOS-HFET and Lateral Diode,” IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 8971-8979, Jan. 2017.
[16] T. MacElwee, J. Roberts, H. Lafontaine, I. Scott, G. Klowak, and L. Yushyna, “Characterization and performance of D-mode GaN HEMT transistor used in a cascode configuration,” Electrochemical Society Transactions., vol. 58, no. 4, pp. 167-177, 2013.
[17] X. Huang, Z. Liu, Q. Li and F. C. Lee, “Evaluation and Application of 600V GaN HEMT in Cascode Structure,” IEEE Transactions on Electron Devices, vol. 29, no. 5, pp. 2453-2461, Aug. 2013.
[18] K. J. Chen, O. Häberlen, A. Lidow, C. L. Tsai, T. Ueda, Y. Uemoto and Y. Wu, “GaN-on-Si Power Technology: Devices and Applications,” IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 779-795, Feb. 2017.
[19] D. Surls and M. Crawford, “Individual and Parallel Behavior of High Current Density, High-Voltage 4h-Silicon Carbide P-I-N diodes,” IEEE Transactions on Magnetics, vol. 41, no. 1, pp. 330-333, Jan. 2005.
[20] 劉烝富,數位控制之半無橋交錯式功率因數修正器研製,碩士論文,國立臺北科技大學電機工程系,2017。
[21] IPW65R190CFD, Datasheet, Infineon, 2011.
[22] TPH3206PSB, Datasheet, Transphorm, 2018.
[23] STTH1506DPI, Datasheet, STMicroelectronics, 2003.
[24] IDH10G65C6, Datasheet, Infineon, 2017
[25] TMS320F2803X, Datasheet, Texas Instruments, 2011.
[26] L. Huber, Y. Jang, M. M. Jovanovic, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May. 2008.
[27] B. Zhou, CCM Totem-Pole Bridgeless PFC with Ultra-Fast IGBT, Masters Thesis, Virginia Polytechnic Institute and State University of Science in Electrical Engineering, 2014.
[28] Q. Li, M. A. E. Andersen and O. C. Thomsen, “Conduction losses and common mode EMI analysis on bridgeless power factor correction,” International Conference on Power Electronics and Drive Systems, pp. 1255-1260, Nov. 2009.
[29] B. Su, J. Zhang, and Z. Lu, “Totem-pole boost bridgeless PFC rectifier with simple zero-current detection and full-range ZVS operating at the boundary of DCM/CCM,” IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 427-435, Feb. 2011.
[30] C. Marxgut, F. Krismer, D. Bortis, and J. W. Kolar, “Ultraflat interleaved triangular current mode (TCM) single-phase PFC rectifier,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 873-882, Feb. 2014.
[31] MS-184060-2, Datasheet, Micrometals Arnold, 2016.
[32] RFN20TJ6SGC9, Datasheet, ROHM Semiconductor, 2018.
[33] TPS77601D, Datasheet, Texas Instruments, 2008.
[34] INA163UA, Datasheet, Texas Instruments, 2000.
[35] LA-100P, Datasheet, LEM, 2009.
[36] UCC27517, Datasheet, Texas Instruments, 2014.
論文全文使用權限:同意授權於2023-11-23起公開