現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:抗還原高溫穩定介電陶瓷材料研究 [以論文名稱查詢館藏系統]
論文英文名稱:The Study of Non-Reducible High Temperature Stable Dielectric Ceramics [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:107
畢業學期:第一學期
出版年度:107
中文姓名:李建樺
英文姓名:Jian-Hua Li
研究生學號:101789001
學位類別:博士
語文別:中文
口試日期:2018/10/12
論文頁數:180
指導教授中文名:王錫福
口試委員中文名:徐永富;吳玉娟;林永仁;許志雄;段維新
中文關鍵詞:X8RX9RMLCC介電特性核-殼結構
英文關鍵詞:X8RX9RMLCCdielectric propertycore-shell structure
論文中文摘要:本研究為探討抗還原高溫穩定型(≧150℃)介電陶瓷材料的組成配方研究,其內容依美國電子工業協會對於高介電常數型電容器的規範可分為(1) X8R介電材料(-55℃-150℃範圍,ΔC25℃≦15%)與(2) X9R介電材料(-55℃-200℃範圍,ΔC25℃≦15%)兩部分。而對於這兩種不同應用溫度範圍的介電陶瓷材料又分別以不同的材料設計觀點進行研究探討及測試應用於積層陶瓷電容元件的可行性。其中,抗還原X8R介電陶瓷材料是由BaTiO3+0.05 mol% MnCO3+1.37 mol% BaSiO3作為母體材料進行不同Sc2O3 (0.3–0.6 mol%)與MgO (0–2 mol%)添加量對於晶體結構與特性影響的研究。由TEM證實當Sc2O3添加量達0.45 mol%以上時,將使BaTiO3晶粒產生具有Sc濃度梯度的核-殼結構,進而有效抑制介電常數對於溫度的變化並符合X8R規範。而最佳特性為共添加0.45 mol% Sc2O3和1 mol% MgO所組成,其介電常數為1744、介電損耗0.58%、-55℃及150℃的TCC為-3.9%和-8.5%且具有良好的絕緣特性2.8×1012 Ω-cm (25℃) 及1.7×1011 Ω-cm (150℃)。另一部分,抗還原X9R介電陶瓷材料則是由94.76 mol% BaTiO3與5.26 mol% Ba2LiTa5O15所構成的複合介電陶瓷材料系統(BT-5.26BLT)。其中,探討不同含量添加物MnCO3 (0–2 mol%)、CaCO3 (0–3 mol%)、Li2TiO3 (0–7 mol%)及SiO2 (0-1 mol%)對於此材料系統之晶體結構與特性的影響。經由XRD及SEM的分析確認各添加物對於燒結後陶瓷體的晶體結構變化。而在陶瓷體中各成份相的相互影響及特性加乘作用下,使得介電溫度特性穩定化並可符合X9R的規範。其最佳特性由BT5.26BLT+5 mol% Li2TiO3+1.5 mol% MnCO3+2.0 mol% CaCO3+1.0 mol% SiO2組成,介電常數為800、介電損耗1.02%、-55℃及200℃的TCC為-3.6%和-9.2%且具有良好的絕緣特性1.2×1011 Ω-cm (25℃) 及7.5×109 Ω-cm (200℃)。
論文英文摘要:This study investigated non-reducible temperature-stable dielectric ceramics that were non-reducible when sintered and had stable dielectric properties at high temperatures (≥150°C). On the basis of the specifications established by the EIA (Electronic Industries Alliance, U.S.A.) for high dielectric constant capacitors (class II), the materials examined in this study were (1) an X8R dielectric ceramic (−55°C–150°C, ΔC25°C ≤ 15%) and (2) an X9R dielectric ceramic (−55°C–200°C, ΔC25°C ≤ 15%). These two dielectric ceramics that could be applied to different temperature ranges were investigated from different perspectives of material design. Their applicability for use on multilayer ceramic capacitors were tested. To examine the non-reducible X8R dielectric ceramic, BaTiO3+0.05 mol% MnCO3+1.37 mol% BaSiO3 was used as a host material to investigate the effects of varying amounts of additives (0.3–0.6 mol% Sc2O3 and 0–2.0 mol% MgO) on the crystal structure and dielectric properties. The analysis results from the transmission electron microscopy revealed that when the content of Sc2O3 doped reached 0.45 mol%, a core-shell structure with a Sc concentration gradient was formed within the BaTiO3 grains, thereby effectively inhibiting the influence of the dielectric constant on temperature change and satisfying the X8R specification. Optimal properties were exhibited when 0.45 mol% Sc2O3 and 1 mol% MgO were doped, which resulted in a dielectric constant of 1744 and dielectric loss of 0.58%. Additionally, the TCC (Temperature Coefficient of Capacitance) was−3.9% at -55°C and −8.5% at 150°C. Favorable insulating properties of 2.8 × 1012 Ω–cm and 1.7 × 1011 Ω–cm were exhibited at the temperatures of 25°C and 150°C, respectively. The non-reducible X9R dielectric ceramic used in this study was a composite dielectric ceramic system (BT-5.26BLT) composed of 94.76 mol% BaTiO3 and 5.26 mol% Ba2LiTa5O15. The effects of various amounts of additives (MnCO3: 0–2 mol%; CaCO3: 0–3 mol%; Li2TiO3: 0–7 mol%; and SiO2: 0-1 mol%) on the crystal structure and dielectric properties of this material system were investigated. X-ray diffraction and scanning electron microscope analyses were conducted to reveal the effects of each additives on the variation of sintered ceramic crystal structures. The results indicated that when components in the sintered ceramic influenced one another and intensified their characteristics, the material’s dielectric temperature properties were stabilized and satisfied the X9R specification. The best composition was determined to be the host material with 5.0% Li2TiO3, 1.5% MnCO3, 2.0% CaCO3 and 1.0% SiO2, which resulted in a dielectric constant of 800 and dielectric loss of 1.4%. Additionally, the TCC was −3.6% at -55°C and −9.2% at 200°C. Favorable insulating properties of 1.2 × 1011 Ω–cm and 7.5 × 109 Ω–cm were exhibited at 25°C and 200°C, respectively.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究目的 5
第二章 基礎理論與文獻回顧 6
2.1 介電陶瓷材料研發概述 6
2.2 鈦酸鋇介電材料的改質 8
2.2.1 鈦酸鋇 8
2.2.2 極化機制與頻率效應 11
2.2.3 鈣鈦礦結構的容忍因子 12
2.2.4 Ba/Ti比對於鈦酸鋇的影響 13
2.2.5 鈦酸鋇的晶粒尺寸效應 14
2.2.6 鈦酸鋇的添加劑 19
2.2.6.1 居禮點的遷移劑及抑制劑 19
2.2.6.2 助燒結劑 23
2.2.6.3 異價離子 24
2.2.7 核殼結構 33
2.3 X8R介電陶瓷材料 34
2.4 X9R介電陶瓷材料 39
2.5 BaTiO3-LiTaO3複合介電陶瓷材料[63,77] 44
第三章 添加Sc2O3及MgO對BaTiO3介電特性之影響 52
3.1 實驗流程及量測 54
3.1.1 實驗藥品及樣品配比 54
3.1.2 實驗流程 56
3.1.3 材料性質分析及檢測儀器 61
3.1.3.1 體密度量測 61
3.1.3.2 X光晶體繞射分析 62
3.1.3.3 顯微結構觀察及分析 63
3.1.3.4 介電特性量測 64
3.2 結果與討論 67
3.2.1 MgO對於顯微組織及介電特性之影響 67
3.2.1.1 燒結緻密化行為 67
3.2.1.2 燒結體晶體結構分析 71
3.2.1.3 燒結體顯微組織 76
3.2.1.4 介電特性探討 79
3.2.2 Sc2O3對於顯微組織及介電特性之影響 85
3.2.2.1 燒結緻密化行為 85
3.2.2.2 燒結體晶體結構分析 88
3.2.2.3 燒結體顯微組織 91
3.2.2.4 介電特性探討 99
3.2.3 卑金屬X8R-MLCC試作 102
3.2.3.1 MLCC緻密性探討 102
3.2.3.2 MLCC介電特性探討 103
3.3 結論 109
第四章 添加物對BaTiO3-Ba2LiTa5O15介電特性影響 111
4.1 實驗流程及量測 112
4.1.1 實驗藥品及配比 112
4.1.2 實驗流程 115
4.1.3 材料性質分析及檢測儀器 120
4.1.3.1 體密度量測 120
4.1.3.2 X光晶體繞射分析 120
4.1.3.3 顯微結構觀察及分析 120
4.1.3.4 介電特性量測 121
4.2 結果與討論 121
4.2.1 MnCO3對於顯微組織及介電特性之影響 122
4.2.1.1 燒結緻密化行為 122
4.2.1.2 燒結體晶體結構分析 125
4.2.1.3 燒結體顯微組織 127
4.2.1.4 介電特性探討 133
4.2.2 CaCO3對於顯微組織及介電特性之影響 136
4.2.2.1 燒結緻密化行為 136
4.2.2.2 燒結體晶體結構分析 138
4.2.2.3 燒結體顯微組織 141
4.2.2.4 介電特性探討 143
4.2.3 助燒結劑對於顯微組織及介電特性之影響 147
4.2.3.1 燒結緻密化行為 147
4.2.3.2 燒結體晶體結構分析 151
4.2.3.3 燒結體顯微組織 155
4.2.3.4 介電特性探討 159
4.3 結論 164
第五章 總結論 166
參考文獻 168
附錄: 離子半徑 180
論文參考文獻:1. W. D. Kingery, H. K. Brown and D. R. Uhlmann, Introduction to ceramics, Academic Press, London and New York, 1971.
2. A. J. Moulson and J. M. Herbert, Electroceramics: materials, properties and applications, Chapman and Hall, New York, 1990.
3. B. Jaffe, W. R. Cook Jr. and H. Jaffe, Peizoelectric ceramics, Academic Press, London and New York, 1971.
4. W. D. Callister and D. G. Rethwisch, Materials science and engineering: an introduction, Wiley, New York, 1991.
5. Z. X. Chen and C. G. Liu, "Theoretical investigation on BaTiO3 with periodic density functional theory BLYP method," Chemical Physics, 270, 2001, pp. 253-261.
6. D. E. Rase and R. Roy, "Phase equilibria in the system BaO–TiO2," Journal of the American Ceramic Society, 38[3], 1955, pp. 102-113.
7. Y. H. Hu, M. P. Harmer and D. M. Smyth, "Solubility of BaO in BaTiO3," Journal of the American Ceramic Society, 68[7], 1985, pp. 372-376.
8. S. H. Yoon, J. H. Lee, D. Y. Kim and N. M. Hwang, "Effect of the liquid‐phase characteristic on the microstructures and dielectric properties of donor‐(Niobium) and acceptor‐(Magnesium) doped barium titanate," Journal of the American Ceramic Society, 86[1], 2003, pp. 88-92.
9. J. D. Murray, "Some cause and effects of phases other than tetragonal BaTiO3 in barium titanate," Journal of the American Ceramic Society, 37, 1958, pp. 476-479.
10. A. Beauger, J. C. Mutin and J. C. Niepce, "Role and behaviour of orthotitanate Ba2TiO4 during the processing of BaTiO3 based ferroelectric ceramics," Journal of Materials Science, 19[1], 1984, pp. 195-201.
11. K. Uchino, E. Sadanaga and T. Hirose, "Dependence of the crystal structure on particle size in barium titanate," Journal of the American Ceramic Society, 72[8], 1989, pp. 1555-1558.
12. G. Arlt, D. Hennings and G. With, "Dielectric properties of fine‐grained barium titanate ceramics," Journal of Applied Physics, 58[4], 1985, pp. 1619-1625.
13. K. Wu and W. A. Schulze, "Aging of the weak-field dielectric response in fine- and coarse-grain ceramic BaTiO3," Journal of the American Ceramic Society, 75, 1992, pp. 3390-3395.
14. S. Aoyagi, Y. Kuroiwa, A. Sawada, H. Kawaji and T. Atake, "Size effect on crystal structure and chemical bonding nature in BaTiO3 nanopowder," Journal of Thermal Analysis and Calorimetry, 81[3], 2005, pp. 627-630.
15. G. Arlt, "The influence of microstructure on the properties of ferroelectric ceramics," Ferroelectrics, 104, 1990, pp. 217-227.
16. G. Arlt and P. Sasko, "Domain configuration and equilibrium size of domains in BaTiO3 ceramics." Journal of Applied Physics, 51[9], 1980, pp. 4956-4960.
17. M. Tanaka and G. Honjo, "Electron optical studies of barium titanate single crystal films," Journal of the Physical Society of Japan, 19[6], 1964, pp. 954-970.
18. 謝宗諭,額外添加Ba2+於(Ba,Ca)(Ti,Zr)O3系統的顯微結構、晶體結構及介電性質,碩士論文,國立成功大學資源工程研究所,台南,2010年。
19. P. S. Dobal, A. Dixit and R. S. Katiyar, "Micro-raman scattering and dielectric investigations of phase transition behavior in the BaTiO3-BaZrO3 system," Journal of Applied Physics, 89[12], 2001, pp. 8085-8091.
20. Y. Iqbal and A. Jamal, "The effect of Ta2O5- and ZnO-doping on the Curie temperature of BaTiO3," Journal of Physics: Conference Series, 371[1], 2012, IOP Publishing.
21. T. A. Jain, C. C. Chen and K. Z. Fung, "Effects of Bi4Ti3O12 addition on the microstructure and dielectric properties of Mn-doped BaTiO3-based X8R ceramics," Journal of Alloys and Compounds, 476, 2009, pp. 414-419.
22. J. C. MPeko, J. Portelles, R. F. Gerardo and F. Calderon, "Electrical conduction of Bi4Ti3O12-doped BaTiO3 ceramics sintered at low temperature," Materials Letters, 32, 1997, pp.33-36.
23. E. S. Kim and W. Choi, "Effect of phase transition on the microwave dielectric properties of BiNbO4," Journal of the European Ceramic Society, 26, 2006, pp. 1761–1766.
24. Y. S. Liang, C. T. Yang, X. H. Zhou, B. Tang and T. Xu, "Effects of BiNbO4 dopants upon dielectric properties of BaTiO3 ceramics" Yadian Yu Shengguang/Piezoelectrics and Acoustooptics, 30, 2008, pp. 618-620.
25. Y. Yuan, M. Du, S. R. Zhang and Z. L. Pei, "Effects of BiNbO4 on microstructure and dielectric properties of BaTiO3-based ceramics," Journal of Materials Science: Mater Electron, 20, 2008, pp. 157-162.
26. I. Burn and G. H. Maher, "High resistivity BaTiO3 ceramics sintered in CO-CO2 atmospheres," Journal of Materials Science, 10[4], 1975, pp. 633-640.
27. S. Sato, S. Yoshinori and N. Takeshi, "Effect of rare-earth doping on the temperature-capacitance characteristics of MLCCs with Ni electrodes," Journal of the Ceramic Society of Japan, Supplement Journal of the Ceramic Society of Japan, Supplement 112-1, PacRim5 Special Issue. The Ceramic Society of Japan, 2004.
28. Y. S. Yoo, H. Kim and D. Y. Kim, "Effect of SiO2 and TiO2 addition on the exaggerated grain growth of BaTiO3," Journal of the European Ceramic Society, 17, 1997, pp. 805–811.
29. H. Y. Lee, J. S. Kim, N. M. Hwang and D. Y. Kim, "Effect of sintering temperature on the secondary abnormal grain growth of BaTiO3," Journal of the European Ceramic Society, 20, 2000, pp. 731-737.
30. M. K. Kang, J. K. Park, D. Y. Kim and N. M. Hwang, "Effect of temperature on the shape and coarsening behavior of BaTiO3 grains dispersed in a SiO2-rich liquid matrix," Materials Letters, 45, 2000, pp. 43–46.
31. Y. Nakano, "Microstructure and related phenomena of multilayer ceramic capacitors with Ni-electrode," Ceramic Transactions, 32, 1993, pp. 119-128.
32. S. Sato, Y. Nakano, A. Sato and T. Nomura, "Effect of Y-doping on resistance degradation of multilayer ceramic capacitors with Ni electrodes under the highly accelerated life test," Japanese Journal of Applied Physics, 36[9S], 1997, pp. 6016-6020.
33. H. Gong, X. Wang, S. Zhang, H. Wen and L. Li, "Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3 ceramics for MLCCs," Journal of the European Ceramic Society, 34, 2014, pp. 1733-1739.
34. N. Wada and T. Hiramatsu, "Investigation of grain boundaries influence on dielectric properties in fine-grained BaTiO3 ceramics without the core–shell structure," Ceramics International, 34, 2008, pp. 933-937.
35. M. Tamura, S. Takagi, D. Sakurai, S. Aman and Y. Kamada, "Dielectric ceramic composition and electronic component," U.S. Patent No. 20110164346A1.
36. X. W. Zhang, Y. Wang and L. T. Li, "Study of the defect chemistry of Ca-doped BaTiO3 ceramics," Ferroelectrics, 101[1], 1990, pp. 61-74.
37. J. G. Park, T. S. Oh and Y. H. Kim, "Dielectric properties and microstructural behaviour of B-site calcium-doped barium titanate ceramics," Journal of Materials Science, 27[21], 1992, pp. 5713-5719.
38. N. G. Eror, "On the defect structure of calcium titanate with non-ideal cationic ratio," Journal of Solid State Chemistry, 43, 1982, pp. 196-203.
39. X. W. Zhang and Y. H. Han, "Defect chemistry of BaTiO3 with additions of CaTiO3," Journal of the American Ceramic Society, 70, 1987, pp. 100-103.
40. C. L. Liu, X. Liu and D. Wang, "Improving piezoelectric property of BaTiO3-CaTiO3-BaZrO3 lead-free ceramics by doping," Ceramics International, 40, 2014, pp. 9881-9887.
41. Y. A. Zulueta, J. A. Dawson and Y. Leyet "Consequences of Ca multisite occupation for the conducting properties of BaTiO¬3," Journal of Solid State Chemistry, 243, 2016, pp. 77-82.
42. S. B. Desu and E. C. Subbarao, "Effect of oxidation states of Mn on the phase stability of Mn-doped BaTiO3," Ferroelectrics, 37[1], 1981, 665-668.
43. D. F. Hennings, "Dielectric materials for sintering in reducing atmospheres," Journal of the European Ceramic Society, 21[10-11], 2001, pp. 1637-1642.
44. X. W. Zhang, Y. Wang and L. T. Li, "Study on the anti-reduction properties of Mn-doped BaTiO3-based ceramics," IEEE Transactions on Electrical Insulation, 25[3], 1990, pp. 587-592.
45. H. Arend and L. Kihlborg, "Phase composition of reduced and reoxidized barium titanate," Journal of the American Ceramic Society, 52[2], 1969, pp. 63-65.
46. J. G. Dickinson and R. Ward, "Some new compounds having the hexagonal barium titanate structure," Journal of the American Chemical Society, 81[15], 1959, pp. 4109-4109.
47. 許雅琪,六方晶鈦酸鋇Ba(Ti1-xRx)O3陶瓷(R= Mn, Fe, Co, Ni, Zn, Mg, In) 之緻密化行為、微結構及微波介電特性,碩士論文,臺北科技大學材料及資源工程系研究所,台北,2006。
48. L. A. Xue, Y. Chen and R. J. Brook, "The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3," Materials Science and Engineering B, 1[2], 1988, pp. 193-201.
49. T. R. Armstrong, L. E. Morgens, A. K. Maurice and R. C. Buchanan, "Effects of zirconia on microstructure and dielectric properties of barium titanate ceramics," Journal of the American Ceramic Society, 72[4], 1989, pp. 605-611.
50. H. Y. Lu, J. S. Bow and W. H. Deng, "Core‐shell structures in ZrO2‐modified BaTiO3 ceramic," Journal of the American Ceramic Society, 73[12], 1990, pp. 3562-3568.
51. G. Liu, X. H. Wang, Y. Lin, L. T. Li and C. W. Nan, "Growth kinetics of core-shell-structured grains and dielectric constant in rare-earth-doped BaTiO3 ceramics," Journal of Applied Physics, 98[4], 2005, 044105.
52. T. R. Armstrong and R. C. Buchanan, "Influence of core‐shell grains on the internal stress state and permittivity response of zirconia‐modified barium titanate," Journal of the American Ceramic Society, 73[5], 1990, pp. 1268-1273.
53. T. Takeuchi, K. Ado, T. Asai, H. Kageyama, Y. Saito, C. Masquelier and O. Nakamura, "Thickness of cubic surface phase on barium titanate single‐crystalline grains," Journal of the American Ceramic Society, 77[6], 1994, pp. 1665-1668.
54. B. Tang, S. R. Zhang, Y. Yuan, X. H. Zhou and Y. S. Liang, "Influence of CaZrO3 on dielectric properties and microstructures of BaTiO3-based X8R ceramics, " Science in China Series E: Technological Sciences, 51[9], 2008, pp. 1451-1456.
55. G. F. Yao, X. H. Wang, T. Y. Sun and L. T. Li, "Effects of CaZrO3 on X8R nonreducible BaTiO3-based dielectric ceramics," Journal of the American Ceramic Society, 94[11], 2011, pp. 3856–3862.
56. B. Tang, Shuren Zhang, Xiaohua Zhou and Ying Yuan, "Doping effects of Mn2+ on the dielectric properties of glass-doped BaTiO3-based X8R materials," Journal of Material Science: Mater Electron, 18, 2007, pp. 541–545.
57. S. Wang, S. R. Zhang, X. H. Zhou, B. Li and Z. Chen, "Effect of sintering atmospheres on the microstructure and dielectric properties of Yb/Mg co-doped BaTiO3 ceramics," Materials Letters, 59[5], 2005, pp. 2457–2460.
58. L. X. Li, Y. Liang and P. Zhang, "Doping effect of Mg2+ on BaTiO3-based metal–dielectric composite system," Journal of Material Science: Mater Electron, 21[3], 2010, pp. 298–301.
59. M. Du, Y. R. Li, Y. Yuan, S. R. Zhang and B. Tang, "A novel approach to BaTiO3-based X8R ceramics by calcium borosilicate glass ceramic doping," Journal of Electronic Materials, 36[10], 2007, pp. 1389-1394.
60. G. H. Chen, Y. Yang, X. L. Kang, C. L. Yuan and C. R. Zhou, "Preparation and dielectric properties of BaTiO3-based X8R ceramics co-doped with BIT and CBS glass," Journal of Materials Science: Materials in Electronics, 24[1], 2013, pp. 196-202.
61. L. X. Li, Y. M. Han, P. Zhang, C. Ming and X. Wei, "Synthesis and characterization of BaTiO3-based X9R ceramics," Journal of Material Science, 44[20], 2009, pp. 5563–5568.
62. S. Gao, S. Wu, Y. Zhang, H. Yang and X. Wang, "Study on the microstructure and dielectric properties of X9R ceramics based on BaTiO3," Materials Science and Engineering: B, 176[1], 2011, pp. 68-71.
63. S. F. Wang, J. H. Li, Y. F. Hsu, Y. C. Wu, Y. C. Lai and M. H. Chen, "Dielectric properties and microstructures of non-reducible high-temperature stable X9R ceramics." Journal of the European Ceramic Society, 33[10], 2013, pp. 1793-1799.
64. 李豐穎,BaTiO3-Bi1/2Na1/2TiO3 系介電陶瓷材料之研究,碩士論文,淡江大學,台北,2007。
65. L. Gao, Y. Huang, L. Liu, T. Lin, C. Liu, F. Zhou and X. Wan, "Crystal structure and properties of BaTiO3–(Bi0.5Na0.5)TiO3 ceramic system," Journal of Material Science, 43[18], 2008, pp. 6267-6271.
66. H. Takeda, W. Aoto and T. Shiosaki, "BaTiO3–(Bi1/2Na1/2)TiO3 solid-solution semiconducting ceramics with Tc > 130oC," Applied Physics Letter, 87, 2005, pp. 102-104.
67. B. J. Chu, D. R. Chen, G. R. Li and Q. R. Yin, "Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics," Journal of the European Ceramic Society, 22, 2002, pp. 2115-2121.
68. L. Gao, Y. Huang, L. Liu, T. Lin, C. Liu, F. Zhou and X. Wan, "Crystal structure and properties of BaTiO3–(Bi0.5Na0.5)TiO3 ceramic system," Journal of Material Science, 43[18], 2008, pp. 6267-6271.
69. G. F. Yao, X. H. Wang, Y. Y. Wu and Longtu Li, "Nb-doped 0.9BaTiO3–0.1(Bi0.5Na0.5)TiO3 ceramics with stable delectric properties at high temperature," Journal of the American Ceramic Society, 95, 2012, pp. 614-618.
70. Y. Yuan, X. H. Zhou, B. Li and S. R. Zhang, "Effects of BiNbO4 and Nb2O5 additions on the temperature stability of modified BaTiO3," Ceramics-likáty, 54, 2010, pp. 258-262.
71. Y. Yuan, X. H. Zhou, C. J. Zhao, B. Li and S.R. Zhang, "High-temperature capacitor based on Ca-doped Bi0.5Na0.5TiO3-BaTiO3 ceramics," Journal of Electronic Materials, 39[11], 2010, pp. 2471-2475.
72. Y. Yuan, E. H. Li, B. Tang, B. Li and X. H. Zhou, "Effects of ZnO and CeO2 additions on the microstructure and dielectric properties of Mn-modified (Bi0.5Na0.5)0.88Ca0.12TiO3 ceramics," Journal of Material Science, 23, 2012, pp. 309-314.
73. X. Li, Y. P. Pu, X. J. Zhu, Z. J. Dong and F. Y. Chen, "Bi4Ti3O12 addition in the ultra-broad temperature stability of BaTiO3-based ceramics," Ferroelectrics, 491[1], 2016, pp. 127-133.
74. B. L. Zhang, B. B. Zhang, N. N. Wang and J. M. Fei, "Effect of process on the dielectric properties of BaTiO3-based X9R ceramics," Advanced Materials Research, 906, Trans Tech Publications, 2014.
75. B. L. Zhang, B. B. Zhang, N. N. Wang and Zhang, "Low temperature sintering of lead-free BaTiO3-based X9R ceramics with Bi2O3 dopant and assisted by LiF-CaF2 flux agent." Advanced Materials Research, 906. Trans Tech Publications, 2014.
76. Q. Xu, Z. Song, W. Tang, H. Hao, L. Zhang, M. Appiah, M. Cao Z. H. Yao, Z. C. He and H. X. Liu, "Ultra‐wide temperature stable dielectrics based on Bi0.5Na0.5TiO3–NaNbO3 system," Journal of the American Ceramic Society, 98[10], 2015, pp. 3119-3126.
77. 李建樺,抗還原X9R介電陶瓷微結構及性質研究,碩士論文,臺北科技大學材料及資源工程系研究所,台北,2012。
78. J. H. Li, S. F. Wang, Y. F. Hsu, T. F. Chung and J. R. Yang, "Effects of Sc2O3 and MgO additions on the dielectric properties of BaTiO3-based X8R materials," Journal of Alloys and Compounds, 768, 2018, pp. 122-129.
79. X. L. Chen, X. X. Li, G. S. Huang, G. F. Liu, X. Yan and H. F. Zhou, "Excellent thermal stability and low dielectric loss of (1−x) BaTiO3–xBi(Li0.5Nb0.5)O3 solid solutions in a broad temperature range applied in X8R," Journal of Materials Science: Materials in Electronics, 28[22], 2017, pp. 17278-17282.
80. D. D. Ma, X. L. Chen, G. S. Huang, J. Chen, H. F. Zhou and L. Fang, "Temperature stability, structural evolution and dielectric properties of BaTiO3–Bi(Mg2/3Ta1/3)O3 perovskite ceramics," Ceramics International, 41[5], 2015, pp. 7157-7161.
81. B. Tang, S. R. Zhang, X. H. Zhou, D. Wang and Y. Yuan, "Regression analysis for complex doping of X8R ceramics based on uniform design," Journal Electronic Materials, 36[10], 2007, pp. 1383–1388.
82. Y. Sun, H. X. Liu, H. Hao, Z. Song and S. J. Zhang, "Structure property relationship in BaTiO3–Na0.5Bi0.5TiO3–Nb2O5–NiO X8R system," Journal of the American Ceramic Society, 98[5], 2015, pp. 1574-1579.
83. Y. Sun, H. X. Liu, H. Hao and S. J. Zhang, "Effect of oxygen vacancy on electrical property of acceptor doped BaTiO3–Na0.5Bi0.5TiO3–Nb2O5 X8R systems," Journal of the American Ceramic Society, 99[9], 2016, pp. 3067-3073.
84. K. Hiroshi, N. Kohzu, Y. Iguchi, J. Sugino, M. Kato, H. Ohsato and T. Okuda, "Study of occupational sites and dielectric properties of Ho–Mg and Ho–Mn substituted BaTiO3," Japanese Journal of Applied Physics, 39[9S], 2000, pp. 5533.
85. B. Li, S. R. Zhang, X. H. Zhou, S. Wang and Z. Chen, "Preparation of BaTiO3-based ceramics by nanocomposite doping process," Journal of Materials Science, 42[6], 2007, pp. 2090-2096.
86. J. Jeong and Y. H. Han, "Effects of MgO-doping on electrical properties and microstructure of BaTiO3," Japanese Journal of Applied Physics, 43[8R], 2004, pp. 5373.
87. V. Peters, A. Bolz, K. Petermann and G. Huber, "Growth of high-melting sesquioxides by the heat exchanger method," Journal of Crystal Growth, 237, 2002, pp. 879-883.
88. H. Gui, B. Gu and X. Zhang, "Dynamics of the freezing process in relaxor ferroelectrics," Physical Review B, 52[5], 1995, pp. 3135-3142.
89. J. Zhao, L. Li, Y. Wang and Z. Gui, "DC bias properties of Ba(Ti1−xZrx)O3 ceramics," Materials Science and Engineering: B, 99, 2003, pp. 207-210.
90. Y. Zhang, L. Li, Z. Gui and J. Tian, "Dielectric response of PMZNT relaxor ferroelectric ceramics under various external field," Materials Letters, 43, 2000, pp. 230-233.
91. J. H. Li, Y. X. Liu, S. F. Wang and Y. P. Hung, "Dielectric properties and microstructures of non-reducible high-temperature stable dielectrics based on 0.9474BaTiO3-0.0526Ba2LiTa5O15," Ceramics International, 43, 2017, pp. S79-S84.
92. X. Zhang, Y. Wang and L. Li, "Study on the defect chemistry of Ca2+ as acceptor dopant in BaTi03," IEEE, 186, 1988.
93. H. T. Langhammer, T. Muller, A. Polity, K. H. Felgner and H. P. Abicht, "On the crystal and defect structure of mangese-doped barium titanate ceramics," Materials Letters, 26, 1996, pp. 205-210.
94. X. Wang, M. Gu, B. Yang, S. Zhu and W. Cao, "Hall effect and dielectric properties of Mn-doped barium titanate," Microelectronic Engineering, 66, 2003, pp. 855-859.
95. 黃彥博,X9R配方開發及介電性質之研究,碩士論文,臺北科技大學材料及資源工程系研究所,台北,2016。
論文全文使用權限:不同意授權