現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:雙級伺服器電源效率提升之控制技術 [以論文名稱查詢館藏系統]
論文英文名稱:Efficiency Improvement Control Techniques for Two‐Stage Server Power [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:電機工程系
畢業學年度:107
畢業學期:第一學期
出版年度:107
中文姓名:游閔翔
英文姓名:Min-Hsiang Yu
研究生學號:102319007
學位類別:博士
語文別:英文
口試日期:2018/07/24
論文頁數:73
指導教授中文名:賴炎生
指導教授英文名:Yen-shin Lai
口試委員中文名:梁從主;邱煌仁;黃明熙;歐勝源;賴炎生
口試委員英文名:Tsorng-Juu Liang;Huang-Jen Chiu;Ming-Shi Huang);Sheng-Yuan Ou;Yen-shin Lai
中文關鍵詞:伺服器電源功率因數修正器LLC 諧振轉換器
英文關鍵詞:Server power supplypower factor correctorLLC resonant converter
論文中文摘要:本論文旨在發展雙級伺服器電源效率提升的控制技術,本文所使用的伺服器電源架構是由功率因數修正器及LLC 諧振轉換器所組成。為提升雙級伺服器電源的效率,本論文提出兩種控制技術,包含:線上諧振頻率自動調整技術,此技術運用於穩態時,調整功率因數修正器輸出的直流鏈電壓,使得LLC諧振轉換器的切換頻率接近或等於諧振頻率,降低LLC諧振轉換器的環流損失及切換損失,進而提升伺服器電源的效率;當運用線上諧振頻率追蹤技術時,LLC諧振轉換器的切換頻率固定接近於諧振頻率後,失去頻率調變能力,唯有調整功率因數修正器之直流鏈電壓才可達到穩壓的功能,但功率因數修正器電壓迴路的響應較慢,為了將提升響應速度,提出一混合式控制技術,穩態時使用線上諧振頻率追蹤技術;負載變動時停止諧振頻率追蹤與調整直流鏈電壓,而固定當時的直流鏈電壓與利用頻率調變的方式達到穩壓,進而提升負載變動時的響應速度。線上最大效率追蹤技術,此技術為調整功率因數修正器輸出的直流鏈電壓,使得兩級伺服電源的效率於各個負載情況下為最大值,進而提升伺服器電源的效率
所提出雙級伺服器電源的控制技術,均以數位控制器實現,實驗系統規格包含輸入電壓AC 110 V/ 220 V、輸出電壓DC 12 V、額定功率540 W。實驗結果證實本論文所提之控制方法的可行性,輸入電壓115 V時半載效率可提升91.46%到92.01%,輸入電壓230 V時半載效率可提升93.39%到94.04%。
論文英文摘要:The dissertation aims to develop the efficiency improvement control techniques of two-stage server power. In this dissertation, two-stage server power supply consists of power factor corrector and LLC resonant converter. In order to improve the efficiency of server power supply, there are three control techniques are proposed in this dissertation. First, an on-line auto-tuning technique of switching frequency by tuning the bus voltage of power factor corrector to track the resonant frequency of LLC resonant converter under the steady state, and thereby reducing the circulating loss and switching losses of the converter to improve the efficiency of server power supply. Second, when the on-line auto-tuning technique of switching frequency is used, the switching frequency of the LLC resonant converter is approximate to the resonant frequency, and the frequency modulation of resonant converter is lost. Traditionally, the output voltage regulation can be achieved only by adjusting the bus voltage of power factor corrector, but the voltage control loop of power factor corrector dynamic response is slower than that of frequency modulation control. In order to improve the dynamic response, a hybrid control technique is proposed, on-line auto-tuning technique of switching frequency is used under steady state condition. Under transient condition, the DC-bus voltage is fixed and the switching frequency is determined by the load condition to improve the transient response speed. Finally, on-line maximum efficiency point tracking technique is developed, the technique tunes the DC-bus voltage of power factor corrector to track at the maximum efficiency of two stage server power supply by perturbation and observation method.
The proposed control techniques are realized by digital signal processor. The specifications of the experimental system include: AC input voltage: 115 / 230 V, DC output voltage: 12 V. The experimental results confirm the effectiveness of the proposed control techniques. The half load efficiency can be increased by 91.46% to 92.01% at input voltage of 115 V, and the half load efficiency can be increased by 93.39% to 94.04% at input voltage of 230 V.
論文目次:Table of Content

摘 要 i
ABSTRACT iii
誌謝 v
Table of Content vi
List of Tables viii
List of Illustrations ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 1
1.2.1 LLC Resonant Converter 3
1.2.2 LLC Resonant Converter with Frequency Tracking 3
1.2.3 Maximum Efficiency Point Tracking 5
1.3 Objectives and Contributions 5
1.4 Organization 6
Chapter 2 On-line Auto-tuning Technique of Switching Frequency for Resonant Converter
7
2.1 Introduction 7
2.2 Problem Description 7
2.2.1 Basic Theory of Resonant Converter
8
2.2.2 Illustration of Resonant Frequency Variation 12
2.3 Proposed On-line Auto-tuning Technique of Switching Frequency 14
2.4 Experimental Results 19
2.5 Summary 32
Chapter 3 A New Hybrid Switching Frequency Control for Fast Dynamic Response 34
3.1 Introduction 34
3.2 Proposed Hybrid Switching Frequency Control 34
3.2.1 On-line Resonant Frequency Tracking Module 37
3.2.2 Frequency Modulation Module 38
3.3 Experimental Results 41
3.4 Summary 50
Chapter 4 Maximum Efficiency Point Tracking for Two-Stage Server Power Supply 51
4.1 Proposed MEPT Technique 51
4.2 Experimental Results 55
Chapter 5 Conclusions and Further Studies 63
5.1 Conclusions 63
5.2 Future Studies 64
References 65
Nomenclature 69
Vita 72
Publication List 73
論文參考文獻:References
[1]. [Online].Available: http://www.plugloadsolutions.com/
[2]. Y. S. Lai and Z. J. Su, "Novel on-line maximum duty point tracking technique to improve two-stage server power efficiency and investigation into its impact on hold-up time," IEEE Trans. on Industrial Electronics, Vol. 61, No. 5, pp. 2252-2263, 2014.
[3]. Y. S. Lai, Z. J. Su, and W. S. Chen, "New hybrid control technique to improve light load efficiency while meeting the hold-up time requirement for two-stage server power," IEEE Trans. on Power Electronics, Vol. 29, No.9, pp. 4763-4775, 2014.
[4]. Y. S. Lai, Z. J. Su, and Y. T. Chang, "Novel phase-shift control technique for full-bridge converter to reduce thermal imbalance under light-load condition," IEEE Trans. on Industry Applications, Vol. 51, No. 2, pp. 1651-1659, 2015.
[5]. Y. S. Lai and Z. J. Su, "New integrated control technique for two-stage server power to improve efficiency under light load condition," IEEE Trans. on Industrial Electronics, Vol. 62, No. 11, pp. 6944-6954, 2015.
[6]. B. Y. Chen and Y. S. Lai, "Switching control technique of phase-shift controlled full bridge converter to improve efficiency under light load and standby conditions without additional auxiliary components," IEEE Trans. on Power Electronics, Vol. 25, No. 4, pp. 1001-1012, Sept. 2009.
[7]. B. Yang, F. C. Lee, A. J. Zhang and G. Huang, “LLC resonant converter for front end DC/DC conversion,” in Proc. IEEE APEC, 2002, pp. 1108-1112.
[8]. B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. van Wyk, “Optimal design methodology for LLC resonant converter,” in Proc. IEEE APEC, 2006, pp. 533-538.
[9]. A. N. Crespin, V. M. Lopez, R. Casanueva, and F. J. Azcondo, “Digital control for an arc welding machine based on resonant converters and synchronous rectification,” IEEE Trans. on Industrial Informatics, vol. 9, no. 2, pp. 839-847, May, 2013.
[10]. X. Fang, H. Hu, J. Shen, and I. Batarseh, “Operation mode analysis and peak gain approximation of the LLC resonant converter,” IEEE Trans. on Power Electronics, vol. 27, no. 4, pp. 1985-1995, Apr., 2012.
[11]. X. Fang, H. Hu, F. Chen, U. Somani, E. Auadisian, J. Shen, and I. Batarseh, “Efficiency-oriented optimal design of the LLC resonant converter based on peak gain placement,” IEEE Trans. on Power Electronics, vol. 28, no. 5, pp. 2285-2296, May, 2013.
[12]. S. De Simone, C. Adragna, C. Spini, and G. Gattavari, “Design-oriented steady state analysis of LLC resonant converters based on FHA,” in Proc. IEEE SPEEDAM, 2006, pp. 200-207.
[13]. M. M. Jovanović and Y. Jang, “State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications—An overview,” IEEE Trans. on Industrial Electron., vol. 52, no. 3, pp. 701-708, Jun. 2005.
[14]. Y. S. Lai, K. M. Ho and B. Y. Chen, “Bandwidth-based analysis and controller design of power factor corrector for universal applications,” In Proc. IEEE ICIT, pp. 626-631, 2012.
[15]. K. M. Ho, C. A. Yeh and Y. S. Lai, “Novel digital-controlled transition current-mode control and duty compensation techniques for interleaved power factor corrector,” IEEE Trans. on Power Electron., vol. 25, no. 12, pp. 3085-3094, Dec. 2010.
[16]. Y. Jang and M. M. Jovanović, “A bridgeless PFC boost rectifier with optimized magnetic utilization,” IEEE Trans. on Power Electron., vol. 24, no. 1, pp. 85-93, Jan. 2009.
[17]. [Online].Available:https://www.mag-inc.com/Media/Magnetics/File-Library/ Product%20Literature/Powder%20Core%20Literature/2015-Magnetics-Powder-Core-Catalog-CN-web.pdf
[18]. [Online].Available:http://www.fumiwa.com/data/products/pdf/FNR(C)/FNR3012(C).pdf
[19]. [Online].Available:https://www.mag-inc.com/Products/Ferrite-Cores/Gapped-Cores?lang=en-US
[20]. M. A. Saket, N. Shafiei, and M. Ordonez, “LLC Converters with planar transformers: issues and mitigation,” IEEE Trans. on Power Electronics, Vol. 32, No.6, pp. 4524-4542, 2017.
[21]. W. Feng, P. Mattavelli, and F. C. Lee, “Pulsewidth locked loop (PWLL) for automatic resonant frequency tracking in LLC DC–DC transformer (LLC-DCX),” IEEE Trans. on Power Electronics, Vol. 28, No. 4, pp. 1862-1869, April, 2013.
[22]. W. Feng, P. Mattavelli, F. C. Lee, and D. Fu, “LLC converters with automatic resonant frequency tracking based on synchronous rectifier (SR)gate driving signals,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2011, pp. 1-5.
[23]. S. Jiang, W. Zhang, B. Liu, and F. Wang, “Automatic resonant frequency tracking in unregulated LLC resonant converters based on total resonant current harmonic calculation, ” in Proc. IEEE ECCE, 2013, pp.4193-4198.
[24]. H. Li and Z. Jiang, “On automatic resonant frequency tracking in LLC series resonant converter based on zero-current duration time of secondary diode,” IEEE Trans. on Power Electronics, Vol. 31, No. 7, pp. 4956-4962, July, 2016.
[25]. H. Wang, S. Dusmez, and A. Khaligh, " Maximum efficiency point tracking technique for LLC-based PEV chargers through variable DC link control," IEEE Trans. on Industrial Electronics, Vol. 61, No. 11, pp. 6041-6049, Nov.,2014.
[26]. Z. J. Su and Y. S. Lai, “On-line DC-link voltage control of LLC resonant converter for server power applications,” in Proc. IEEE ECCE, 2014, pp. 5422-5428.
[27]. H. Pinheiro, P. K. Jain, and G. Joosand, “Self-sustained oscillating resonant converters operating above the resonant frequency,” IEEE Trans. on Power Electronics, Vol. 14, No. 5, pp. 803-815, Sept., 1999.
[28]. M. Z. Youssef, K. Woronowicz, and P. K. Jain, “A wide bandwidth resonant digitally controlled 48 V voltage regulator module,” in Proc. IEEE INTELEC, 2007, pp. 27-30.
[29]. M. Z. Youssef and P. K. Jain, “Design and experimentation of a novel variable frequency 48V voltage regulator module with self-sustained oscillation controller,” in Proc. IEEE APEC, 2006, pp. 15-23.
[30]. J. Jang, P. S. Kumar, D. Kim, and B. Choi, “Average current-mode control for LLC series resonant dc-to-dc converters,” in Proc. IPEMC, 2012, pp. 923–930.
[31]. H. Ma, Q. Liu, and J. Guo, “A sliding-mode control scheme for LLC resonant DC/DC converter with fast transient response,” in Proc. IEEE IECON, 2012, pp. 162–167.
[32]. W. Feng, F. C. Lee, and P. Mattavelli, “Simplified optimal trajectory control (SOTC) for LLC resonant converters,” IEEE Trans. on Power Electronics, vol. 28, no. 5, pp. 2415–2426, May 2013.
[33]. Z. Hu, Y. F. Liu, and P. C. Sen, “Bang-Bang charge control for LLC resonant converters,” IEEE Trans. on Power Electronics, vol. 30, no. 2, pp. 1093–1108, Feb. 2015.
[34]. [Online]. Available: http://www.waynekerrtest.com/brochure/3255B.pdf
[35]. E. Irmak, I. Colak, O. Kaplan, and N. Guler, “Design and application of a novel zero-crossing detector circuit,” in Proc. Power Engineering, Energy and Electrical Drives, 2011, pp. 1–4.
[36]. H. C. Chow, and I. H. Wang, “High performance automatic gain control circuit using a S/H peak-detector for ASK receiver,” in Proc. Electronics, Circuits and Systems, 2002, pp. 429–432.
[37]. Y.-C. Kuo, T. J. Liang, and J. F. Chen, “Novel maximum-power-point-tracking controller for photovoltaic energy conversion system,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 594–601, Jun. 2001.
[38]. A. Thenkani and N. S. Kumar, “Design of optimum maximum power point tracking algorithm for solar panel,” in Proc. International Conference on Computer, Communication and Electrical Technology (ICCCET), 2011, pp. 370–375.
[39]. J. Abu-qahouq, H. Mao, H. Al-atrash, and I. Batarseh, “Maximum efficiency point tracking (MEPT) method and digital dead time control implementation,” IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1273–1281, Sep. 2006.
[40]. D. H. Vega, N. Marx, L. Boulon, and A. Hernandez, “Maximum efficiency point tracking for hydrogen fuel cells,” in Proc. Canadian Conference on Electrical and Computer Engineering (CCECE), 2014, pp. 1–6.
[41]. V. Visnen and J. Hiltunen, “Maximum efficiency point tracking algorithm for dual active bridge converters,” in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 623–629.
[42]. D. Patil, M. Sirico, L. Gu, and B. Fahimi, "Maximum efficiency tracking in wireless power transfer for battery charger: Phase shift and frequency control," in Proc. Energy Conversion Congress and Exposition (ECCE), 2016, IEEE, pp. 1-8.
論文全文使用權限:不同意授權