現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:改良潛伏式澆口殘留與模塊疲勞壽命之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Study on improving submarine gate de-gating reside and mold block fatigue life [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:機電學院機電科技博士班
畢業學年度:107
畢業學期:第一學期
出版年度:107
中文姓名:尤鴻威
英文姓名:Iao, Hong-wai
研究生學號:102669030
學位類別:博士
語文別:中文
口試日期:2018/11/03
論文頁數:123
指導教授中文名:陸元平
口試委員中文名:瞿志行;林上智;潘自欽;簡誠穎
中文關鍵詞:潛伏式澆口射出成形澆口殘留疲勞壽命有限元素分析
英文關鍵詞:submarine gateinjection moldinggate residuefatigue lifeFEA
論文中文摘要:本研究透過改變D型潛伏式澆口角度獲得較佳的去澆效果,從而減少去澆殘留。希望在相同頂出力量下減少受力面積,從而增加去澆應力;首先以拉伸試驗判斷其塑膠材料偏向脆性的材料,故在理論計算公式是使用脆性材料的應力計算公式進行去澆應力之計算,經計算澆口角度轉置可獲得較大的去澆應力;再利用ANSYS Workbench電腦輔助工程軟體計算其去澆時所產生的應力,在此可知道轉置角度越大其最大應力越大,而楔型角越大其最大主應力越小;再亦針對疲勞壽命時可發現轉置角度對於其壽命影響較小;在分析驗證中利用Autodesk Moldflow進行充填保壓的分析,結果證明轉置角度在60度時其充填壓力比其他角度還小,並且其後續的包風影響亦較小;綜合以上在最後的實驗開模驗證時使用轉置角度為60度的D型潛伏式澆口與0度的進行比對。
最後藉由實驗驗證,在定數取樣可以觀察到在第1,000模次時,0度的D型潛伏式澆口即發生澆口殘留的問題;於60度的澆口情況在3,500模次結束前均情況良好。而在隨機取樣中,0度的澆口有超過50%有澆口殘留的問題,其中超出0.05mm規格者有32%,反觀60度則只有12%;經由實驗證明轉置後的D型潛伏式澆口具有比傳統澆口有更好的去澆性能,能有效的減少澆口在去澆後殘留的問題。
論文英文摘要:This study changed D-type submarine gate angles to achieve superior degating results and produce less degating residue. The goal was to decrease the force-bearing area given an identical ejector force, thereby increasing the degating stress. A tensile test was performed to identify brittle plastic materials, in which degating stress was calculated using the theoretical formulas typically used for calculating brittle material’s stress. According to the calculations, flipping the gate angles created higher degating stress. Subsequently, a computer-assisted engineering software called ANSYS Workbench was utilized to calculate stress created during degating. The results revealed that the higher the flip angle was, the greater the stress became, and that the higher the wedge angle was, the lower the maximum principal stress became. Next, a fatigue life test was conducted; the results indicated that flip angle exhibited a minimal effect on fatigue life. Then, Autodesk Moldflow was used to perform filling and packing analyses, where the results showed that the least filling stress was achieved at a flip angle of 60°; such flip angle also produced a relatively small air trap effect. On the basis of these findings, the D-type submarine gate with a flip angle of 60° was compared with the D-type submarine gate with a flip angle of 0° during an open-die verification experiment.
The verification experiment showed that when the fixed number sampling method was adopted, gate residue was observed in the 1000th mode of the D-type submarine gate with a flip angle of 0°, whereas no gate residue was observed by the 3500th mode of the D-type submarine gate with a flip angle of 60°. When the random sampling method was adopted, more than 50% of D-type submarine gates with a flip angle of 0° had gate residue (note that 32% of them exceeded the requirement of 0.05 mm), whereas only 12% of D-type submarine gates with a flip angle of 60° had gate residue. These results confirm that flipped D-type submarine gates demonstrate superior degating performance than traditional D-type submarine gates do, and that they can effectively reduce degating residue.
論文目次:摘 要 I
ABSTRACT II
誌 謝 IV
目 錄 V
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻回顧 3
1.4 論文架構 10
第二章 文獻探討 11
2.1 流道系統 11
2.1.1 主流道 12
2.1.2 分流道 13
2.1.3 澆口 16
2.2 破壞力學 21
2.2.1 恆力破壞 26
2.2.1.1 脆性破壞 27
2.2.1.2 延性破壞 29
2.2.1.3 高分子材料破壞行為 31
2.2.2 疲勞破壞 34
2.2.2.1 疲勞壽命 36
第三章 研究方法 38
3.1 研究流程 38
3.2 實驗過程 40
3.2.1 拉伸試驗 40
3.2.2 研究假設 44
3.2.3 設計變更 47
3.2.4 去澆能力CAE分析 61
3.2.5 疲勞壽命評估 66
3.2.6 模流分析 68
第四章 結果與討論 71
4.1 去澆能力分析評估 71
4.2 疲勞壽命分析評估 80
4.3 模流分析結果評估 85
4.4 實際驗證 89
第五章 結論與未來展望 101
5.1 結論 101
5.2 未來展望 103
參考文獻 104
附錄A Futaba標準模座 108
附錄B 隨機取樣澆口外觀 109
論文參考文獻:1. Mennig, Günter and Stoeckhert, Klaus, 2013, Mold-Making Handbook, Hanser.
2. Herbert Rees, 2002, Mold Engineering, Hanser Gardner Publications, ISBN:1569903220.
3. Yung-Kang Shen, Chih-Wei Wu, Ya-Feng Yu, Hung-Wei Chung, 2008, "Analysis for optimal gate design of thin-walled injection molding, international communications in Heat and Mass transfer", Internal communication in heat and mass transfer, Vol 35, pp.689-792.
4. Randy Kerkstra, 2014, "The Importance of Gate Geometry", Plastics Technology, pp.34~37.
5. John P. Beaumont, 2007, Runner and Gating Design Handbook, Hanser, ISBN: 978-3-446-40765-7.
6. John L. Bala, 1995, "Automated Optical Assembly", Optical Engineering Mildwest’95, Vol.2622, pp.157-164.
7. V. Leo and Ch. Cuvelliez, 1996, "The effect of the packing parameters, gate geometry, and mold elasticity on the final dimensions of a molded part", Polymer Engineering and Science, Vol. 36, No. 15. pp.1961-1971.
8. Peng-Cheng Xie, Feng-Xia Guo, Zhi-Wei Jiao, Yu-Mei Ding, Wei-Min Yang, 2013, "Effect of gate size on the melt filling behavior and residual stress of injection molded parts", Materials and Design, Vol. 53, pp.266-372.
9. Y.C. Lam, G.A. Britton, D.S. Liu, 2004, "Optimisation of gate location with design constraints", Internal journal of advanced manufacturing technology, Vol. 24, pp 560-566.
10. H.S. Kim, J.S. Son, Y.T. Im, 2003, "Gate location design in injection molding of an automobile junction box with integral hinges", Journal of Materials Processing Technology, Vol. 140, pp.110-115.
11. Ampere A. Tseng and Jeffrey D. Kaplan, 1994, "A computer-aided analysis of automatic degating molds for injection molding of plastic balls", Polymer Engineering and science, Vol.34, No.3.
12. T. Tábi, A. Suplicz, F. Szabó, N. K. Kovács, B. Zink, H. Hargitai, J. G. Kovács, 2015, "The analysis of injection molding defects caused by gate vestiges", eXPRESS Polymer Letters, Vol.9, No.4, pp.394-400.
13. Bob Lee, Frank Yu, 2013, "Mold compound fracture Mode Study for High Reliability Package", 2013 IEEE 15th Electronics Packaging Technology Conference, pp.189-192.
14. 張永彥,2013,塑膠模具設計學,全華科技圖書股份有限公司,台灣。
15. 歐陽渭城,2003,射出模具設計詳解,全華科技圖書股份有限公司,台灣。
16. HUSYT, 2012, Hot Runner Product Guide, Husky Injection Molding System.
17. 羅嘉麒,2010,CAE電腦輔助分析應用於IMD模內裝飾成形製程之澆口設計與參數研究,碩士論文,台灣科技大學。
18. 林建中,2001,高分子材料科學,文京出版社,台灣。
19. Dale E. Varberg and Edwin J. Purcell, 1992, Calculus with Analytic Geometry, Prentice-Hall International Editions .
20. James C. Gerdeen and Ronald A. L. Rorrer, 2011, Engineering Design with Polymers and Composites, CRC Press.
21. Marc Meyers and Krishan Chawla, 2009, Mechanical Behavior of MATERIALS, Cambridge, ISBN:978-052186-675-0.
22. Serope Kalpakjian and Steven Schmid, 2010, Manufacturing Engineering and Technology, Pearson.
23. 何明雄,2000,PC/ABS 合膠材料機械性質之研究,博士論文,國立中央大學。
24. 莊東漢,2007,材料破損殘分析,五南文化,台灣。
25. Robert L. Norton, 2006, Machine Design An Integrated Approach, Pearson Prentice Hall.
26. Reza Abbaschian, Lara Abbaschian, Robert E., Reed-Hill, 2004, Physical Metallurgy Principles 3/e, Cengage Learning, ISBN 9789-57212-6721.
27. 方征平、宋義虎、沈烈,2005,高分子物理,浙江大學出版社,中國。
28. 詹凱迪,2016,溫度變化下雙層懸臂樑的層間應力分析及相關疲勞受命預測,碩士論文,國立清華大學。
29. 黃兆錫,2012,鋁合金自行車車架之疲勞壽命分析,碩士論文,逢甲大學。
30. Monika G. Garrell, Albert J. Shih, Edgar Lara Curzio, and Ronald O. Scattergood, 2003, "Finite-Element Analysis of Stress Concentration in ASTM D 638 Tension Specimens", Journal of Testing and Evaluation, Vol. 31, No. 1.
31. CHIMEI:http://www.chimeicorp.com/zh-tw/
32. Lee H. H., 2011, Finite Element Simulations with ANSYS Workbench 13, Stephen Schroff, ISBN: 978-1-58503-653-0.
33. 張岩、李豔豔,2017,ANSYS Workbench17.0結構模擬分析從入門到精通,機械工業出版社,中國。
34. 北京兆迪科技有限公司,2018,ANSYS Workbench17.0結構分析快速入門進階與精通,電子工業出版社,中國。
35. Autodesk Moldflow Insight http://help.autodesk.com/view/MFIA/2016/CHT/
36. ASTM-D638-14
37. 李昉陸,2013,垂直探針之疲勞及最佳化分析,碩士論文,國立高雄應用科技大學。
38. Joseph S., Charles M. and Richard B., 2004, Mechanical Engineering Design 7e, McGraw-Hill, ISBN: 0-07-252036-1.
39. 黃仁德,2003,PC/TPU薄膜模內貼合射出成型製程特性之研究,碩士論文,中原大學。
40. 王柏凱,2013,雷射共軛焦三維表面形貌量測儀開發應用於拋光墊之碎形維度和承載比分析,碩士論文,國立台灣科技大學。
41. Donald R.A., Pradeep P.P., 2004, Essentials of Materials Science and Engineering, THOMSON, ISBN 0-534-25309-1.
42. Mehdi M., Kazem A., Romeo M., 2015, "Improved gate system for scrap reduction in injection molding processes", Procedia Manufacturing, Vol 2, pp 246-250.
43. Zhang N., Su Q., Choi S.Y., Michael D.G., 2015, "Effects of gate design and cavity thickness on filling, morphology and mechanical properties of microinjection mouldings", Materials and Design , Vol. 83, pp. 835-847.
論文全文使用權限:同意授權於2023-11-05起公開