現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:有價值的一維及二維電催化奈米結構材料應用於真實樣品的生物分子檢測 [以論文名稱查詢館藏系統]
論文英文名稱:One and Two-Dimensional Nanostructured Materials as a Promising Electrocatalyst for the Detection of Biomolecules in Real Samples [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程與生物科技系化學工程碩士班
畢業學年度:107
畢業學期:第一學期
出版年度:107
中文姓名:陳宥琪
英文姓名:Yu Chi Chen
研究生學號:105738035
學位類別:碩士
語文別:中文
口試日期:2018/10/05
論文頁數:77
指導教授中文名:陳生明
口試委員中文名:曾添文;駱碧秀;連萬福
中文關鍵詞:聚苯乙烯磺酸鈉3,4-二羥基肉桂酸熱重量分析儀聚合物離子聚合物草狀二硫化釩薑狀鉬酸鋇感測器過氧化氫多巴胺真實樣品神經傳導物質
英文關鍵詞:Poly (sodium 4-styrenesulfonate)3,4-Dihydroxy-trans-cinnamateTGACo-polymerIonic polymerGrass-like Vanadium disulfideSensorHydrogen peroxideDopamineGinger-like Barium molybdateNeurotransmitterReal samples
論文中文摘要:第一部分
近年研究人員關注設計製備奈米結構的無機材料,應用於食品防腐化學品低濃度的檢測,於本研究透過簡單的超音波震盪製備新型的草狀二硫化釩(vanadium disulfide, VS2),且製備過程不使用界面活性劑及無須使用特定儀器設備,應用於檢測過氧化氫(Hydrogen peroxide, H2O2)。透過X光繞射(X-ray diffraction, XRD)、拉曼(Raman)、場發式掃描電子顯微鏡(field-emission scanning electron microscopy, FE-SEM)、及X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS)進行VS2的結晶性質、表面型態、元素組成、及其價態之檢測和確認,藉此發現與未修飾之玻璃碳電極(Glassy carbon electrode, GCE)相比,草狀VS2修飾的GCE於陰極峰值有較高的電流及較低的電位,顯示出其有優異的電催化活性,此外草狀VS2/GCE濃度偵測範圍0.1-260 μM、偵測極限26 nM、及良好的靈敏度0.23 μAμM-1cm-2、及於檢測H2O2時加入共同干擾物質,也有優異的選擇性。且於牛奶和尿液的樣品中,有好的感測能力,具有可觀的回收率,表其於食品污染物中有實用性。

第二部分
聚苯乙烯磺酸鈉(poly sodium 4-styrenesulfonate, PSSS)塗佈於多層奈米碳管(Multi-walled carbon nanotube, MWCNTs)修飾玻璃碳電極(Glassy carbon electrode, GCE),針對3,4-二羥基肉桂酸具有選擇性及靈敏度。研究中製備的PSSS@f-MWCNTs修飾GCE相較於MWCNTs/GCE、PSSS/GCE及GCE測量抗氧化藥物時,能有更明顯循環伏安法之波峰。PSSS@f-MWCNTs/GCE量測抗氧化藥物最適化條件為:濃度偵測範圍0.4-173.9 μM、偵測極限0.0035 μM、及靈敏度14.4479 μAμM-1cm-2,且研究中發展的感測器具有抗擾性、重現性、良好的重複性、及儲存穩定性。

第三部分
在研究中我們研發一種新型電化學感測器,運用薑狀的鉬酸鋇(Barium-Molybdate, BaMoO4)修飾網版印刷碳電極(Screen printed carbon electrode, SPCE)催化多巴胺(Dopamine ,DA)進行檢測。運用簡單的共沉澱技術製備薑狀BaMoO4,並透過XRD, Raman, FE-SEM、及EDX分析BaMoO4的結構及結晶態,且針對DA進行電化學檢測,此電極對於DA具有可逆的電化學反應、明顯的電流波峰、好的選擇性及靈敏度。BaMoO4/SPCE於檢測DA發揮重要的作用,其包含低的檢測極限0.021 µM、寬的偵測範圍0.1-266 µM、及好的靈敏度0.35 μAμM-1cm-2,研究為二元金屬氧化物的製備提供電化學領域未來應用。
論文英文摘要:Part 1
Design and fabrication of novel inorganic nanomaterials for the low-level detection of food preservative chemicals significant is of interest to the researchers. In the present work, we have developed a novel grass-like vanadium disulfide (GL-VS2) through a simple sonochemical method without surfactants or templates. GL-VS2 was used as an electrocatalyst for reduction of hydrogen peroxide (H2O2). The crystalline nature, surface morphology, elemental compositions and binding energy of the GL-VS2 were analyzed by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The electrochemical studies show that the GL-VS2 modified glassy carbon electrode (GL-VS2/GCE) has a superior electrocatalytic activity and lower-reduction potential than the response observed for unmodified GCE. Furthermore, the GL-VS2/GCE displayed a wide linear response range (0.1-260  μM), high sensitivity (0.23  μA μM−1 cm−2), lower detection limit (26  nM) and excellent selectivity for detection of H2O2. The fabricated GL-VS2/GCE showed excellent practical ability for detection of H2O2 in milk and urine samples, revealing the real-time practical applicability of the sensor in food contaminants.

Part 2
A greatly selective, and sensitive 3,4- Dihydroxy-trans-cinnamate sensor based on a poly (sodium 4-styrenesulfonate) (PSSS) coated with functionalized multi-walled carbon nanotubes (PSSS@ƒ-MWCNTs) composite modified GCE was developed. The fabricated PSSS@ƒ-MWCNTs/GCE displayed an improved voltammetric response for anti-oxidant drug relative to that of a ƒ-MWCNTs/GCE, PSSS/GCE, and a bare GCE. Under optimum conditions, the PSSS@ƒ-MWCNTs/GCE showed a wide linear range at anti-oxidant drug concentrations of 0.4-173.9 µM. The limit of detection is about 0.0035 µM and sensitivity is about 17.4479 µA µM-1cm-2. The developed sensor showed anti-interference, reproducibility, good repeatability, and storage stability.

Part 3
In this work, we report a novel electrochemical sensor for the selective detection of dopamine (DA) based on ginger-like morphology of barium molybdate (BaMoO4) modified screen printed carbon electrode (SPCE). The ginger-like BaMoO4 was prepared through a simple co-precipitation technique and its physiochemical properties were systematically investigated by various analytical and spectroscopic techniques such as X-ray diffraction (XRD), Raman, field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the as-prepared ginger-like BaMoO4 was effectively investigated for the sensitive and selective electrochemical determination of DA. The ginger-like BaMoO4/SPCE shows a reversible electrochemical behavior with superior current response for DA detection. The BaMoO4 catalyst played a significant role to electrochemical detection of DA, as a results very low detection limit (0.021 µM), wide linear response range (0.1-266 µM), well sensitivity (0.35 μAμM−1cm−2) and good selectivity in the presence of common metal ions and biological compounds. This study provides a novel idea for the fabrication of binary metal oxides and their potential application in electrochemical sensor and biosensor.
論文目次:中文摘要 ii
Abstract iv
誌謝 vii
目錄 viii
第一章 緒論 1
1.1 電化學分析方法 1
1.2 感測器定義 2
1.2.1 生物感測器 2
1.2.2 化學感測器 3
1.3 研究目的 3
第二章 文獻回顧 5
2.1 過氧化氫物化性質 5
2.2 咖啡酸物化性質 6
2.3 多巴胺物化性質 7
2.4 分析方法與原理 8
2.4.1 循環伏安法(Cycle voltammetry, CV)[29] 8
2.4.2 微分脈衝伏安法(Differential pulse voltammetry, DPV) 10
2.4.3 電子顯微鏡(Electron microscope)[33] 11
2.4.4 穿透式電子顯微鏡(Transmission electron microscopy, TEM) 13
2.4.5 X光繞射(X-Ray diffraction, XRD) 14
2.4.6 熱重量分析儀(Thermo gravimetric analyzer, TGA) 16
2.4.7 傅立葉轉換紅外光譜儀(Fourier transform infrared spectrometer, FTIR)[39] 16
2.4.8 拉曼光譜學(Raman spectra, Raman) 22
2.4.9 電化學阻抗圖譜(Electrochemical Impedance Spectroscopy, EIS) 24
2.4.10 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 28
第三章 實驗藥品、儀器設備、材料製備 30
3.1 實驗藥品 30
3.2 儀器設備 31
3.3 材料製備 32
第四章 結果與討論 35
4.1 結果 35
4.2 運用超音波震盪合成新穎的草狀二硫化釩製作檢測過氧化氫的活性非酶電化學感測器 35
4.2.1 Grass-like Vanadium disulfide的性質 35
4.2.2 電化學阻抗譜 38
4.2.3 雙氧水的電化學表現於VS2修飾GCE 39
4.2.4 安培法(i-t)檢測雙氧水 41
4.2.5 抗干擾測定 44
4.2.6 再現性及儲存、操作穩定性的影響 44
4.2.7 真實樣品分析 45
4.2.8 結論 46
4.3 超音波震盪合成法製作功能化多層奈米碳管塗佈聚苯乙烯磺酸鈉感測器運用電化學檢測紅葡萄酒樣品中的抗氧化物 47
4.3.1 PSSS@ƒ-MWCNTs的性質 47
4.3.2 電化學阻抗譜 48
4.3.3 咖啡酸電催化活性於不同修飾電極 49
4.3.4 掃描速率的影響 50
4.3.5 CA的校正曲線 51
4.3.6 抗干擾測試 53
4.3.7 累積時間、再現性及儲存穩定性的影響 54
4.3.8 真實樣品分析 55
4.3.9 結論 56
4.4 新穎薑狀的鉬酸鋇應用於電催化檢測神經遞質之多巴胺 57
4.4.1 Barium-Molybdate的性質 57
4.4.2 DA電催化活性於不同修飾電極 58
4.4.3 掃描速率的影響 59
4.4.4 pH的影響 60
4.4.5 微分脈衝伏安圖 61
4.4.6 抗干擾、穩定度及再現性測試 64
4.4.7 結論 65
參考文獻 66
論文參考文獻:[1] 第一章 電化分析法的基本原理. Available from: http://mse.nthu.edu.tw/~jch/surface/report/873419/ch1.html.
[2] Huang, C.-Y., Y.-C. Huang, and H.-Y. Lin, Design of a Portable Multi-Channel Potentiostat for Biomolecule Sensors. International Journal of Science and Engineering, 2011. 1(1): p. 1-10.
[3] Council, N.R., Expanding the vision of sensor materials. 1995: National Academies Press.
[4] 謝廣文, 第二章 感測器原理. 農業自動化叢書機電整合, 2003: p. 11-28.
[5] Adam, H., G. Stanisław, and I. Folke, Chemical sensors definitions and classification. Pure Appl. Chem, 1991. 63: p. 1274-1250.
[6] 蘇宏基, 化學生物感測器講義 1998: p. 44.
[7] Eggins, B.R., Chemical sensors and biosensors. Vol. 28. 2008: John Wiley & Sons.
[8] Rezaei, B., et al., Synthesis of functionalized MWCNTs decorated with copper nanoparticles and its application as a sensitive sensor for amperometric detection of H2O2. Electroanalysis, 2015. 27(6): p. 1457-1465.
[9] Annamalai, S.K., B. Palani, and K.C. Pillai, Highly stable and redox active nano copper species stabilized functionalized-multiwalled carbon nanotube/chitosan modified electrode for efficient hydrogen peroxide detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 395: p. 207-216.
[10] Miller, E.W., et al., Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. Journal of the American Chemical Society, 2005. 127(47): p. 16652-16659.
[11] Filik, H., et al., Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film. Talanta, 2013. 116: p. 245-50.
[12] Hapiot, P., et al., Oxidation of caffeic acid and related hydroxycinnamic acids. Journal of Electroanalytical Chemistry, 1996. 405(1-2): p. 169-176.
[13] Williamson, G. and C. Manach, Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies–. The American journal of clinical nutrition, 2005. 81(1): p. 243S-255S.
[14] Nagaoka, T., et al., Selective antiproliferative activity of caffeic acid phenethyl ester analogues on highly liver-metastatic murine colon 26-L5 carcinoma cell line. Bioorganic & medicinal chemistry, 2002. 10(10): p. 3351-3359.
[15] Nomura, M., et al., Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester. Molecular carcinogenesis, 2001. 31(2): p. 83-89.
[16] Baghestani, A., et al., Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Science, 1999: p. 498-504.
[17] Masuda, T., et al., Antioxidation mechanism studies of caffeic acid: identification of antioxidation products of methyl caffeate from lipid oxidation. Journal of agricultural and food chemistry, 2008. 56(14): p. 5947-5952.
[18] Alanko, J., et al., Modulation of arachidonic acid metabolism by phenols: relation to their structure and antioxidant/prooxidant properties. Free Radical Biology and Medicine, 1999. 26(1-2): p. 193-201.
[19] Kang, N.J., et al., Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis, 2008. 30(2): p. 321-330.
[20] Li, J., et al., Facile synthesis of MnO2-embedded flower-like hierarchical porous carbon microspheres as an enhanced electrocatalyst for sensitive detection of caffeic acid. Anal Chim Acta, 2017. 985: p. 155-165.
[21] Di Chiara, G., et al., Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology, 2004. 47: p. 227-241.
[22] Pandikumar, A., et al., Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Advances, 2014. 4(108): p. 63296-63323.
[23] Granado, V.L., et al., Thin-film electrochemical sensor for diphenylamine detection using molecularly imprinted polymers. Anal Chim Acta, 2014. 809: p. 141-7.
[24] Sakthivel, M., et al., Entrapment of bimetallic CoFeSe 2 nanosphere on functionalized carbon nanofiber for selective and sensitive electrochemical detection of caffeic acid in wine samples. Analytica Chimica Acta, 2018. 1006: p. 22-32.
[25] National Center for Biotechnology Information PubChem Compound Database.
[26] Cook, W.S. H2O2 Therapy. Available from: http://h2o2therapy.blogspot.com/p/h2o2-science.html.
[27] National Center for Biotechnology Information. 2018.1.13; Available from: https://pubchem.ncbi.nlm.nih.gov/compound/689043.
[28] Institute, N.C. 2018.8.2; Available from: https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=NCI_Thesaurus&code=C62025.
[29] Kissinger, P.T. and W.R. Heineman, Cyclic voltammetry. Journal of Chemical Education, 1983. 60(9): p. 702.
[30] 林良憲, 利用奈米碳管與電化學預處理修飾網版印刷碳電極選擇性
偵測尿酸之研究, in 化學研究所. 2010, 國立中山大學. p. 103.
[31] 黃俊岳、許禎玲、劉育佐、曾世鎰, 應用於電化學生物感測器之低成本可攜帶式恆電位儀開發
(I) in 電機工程學系. 2012, 國立臺南大學: 行政院國家科學委員會專題研究計畫. p. 12.
[32] Bard, A.J. and L.R. Faulkner, Fundamentals and applications. Electrochemical Methods, 2001. 2: p. 482.
[33] 何雍, 儀器分析總整理. 99, 台北市.
[34] Swapp, S. Geochemical Instrumentation and Analysis. Integrating Research and Education 2017; Available from: https://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html.
[35] Transmission Electron Microscope. Available from: www.ammrf.org.au/myscope/tem/introduction.
[36] Robinson, D.G.J.; Available from: http://www.met.reading.ac.uk/pplato2/h-flap/phys7_1.html.
[37] 林麗娟, X 光繞射原理及其應用. X 光材料分析技術與應用專題, 1994.
[38] Co., T.T. 2003.
[39] 劉振海, 儀器分析導論, ed. 泉美治. 2005, 北京: 化學工業出版社. 218.
[40] Ismail, A.A., F.R. van de Voort, and J. Sedman, Fourier transform infrared spectroscopy: principles and applications, in Techniques and instrumentation in analytical chemistry. 1997, Elsevier. p. 93-139.
[41] Muelaner, J. LASER INTERFEROMETERS. Available from: http://www.muelaner.com/laser-interferometers/.
[42] 林新花, 儀器分析, ed. 吳兆強. 2002, 廣州: 華南理工大學出版社.
[43] Kieffer, S.W., Heat capacity and entropy; systematic relations to lattice vibrations. Reviews in Mineralogy and Geochemistry, 1985. 14(1): p. 65-126.
[44] Fadini, A., Schnepel, M. F, Vibrational Spectroscopy Methods and Applications. 1989, Ellis Horwood Limited. 205.
[45] B.V, A. Electrochemical Impedance Spectroscopy. 2011.
[46] Lee, W.E., et al., Self-assembled nanostructures for bioanalysis. 2015.
[47] Turgoose, R.C.a.S. Electrochemical Impedance and Noise. 1999; Available from: www.nace.org.
[48] PHYSICAL ELECTRONICS, INC. Available from: https://www.phi.com/surface-analysis-techniques/xps-esca.html.
[49] Thermo scientific XPS. Available from: https://xpssimplified.com/whatisxps.php.
[50] 馬遠榮, 低維奈米材料. 科學發展, 2004. 382: p. 72-75.
[51] 陳貴賢、吳季珍, 一維奈米材料的研究. 物理雙月刊, 2001. 23: p. 609-613.
[52] 黃松勳. 二維材料的發展與應用進程. 2018; Available from: https://portal.stpi.narl.org.tw/index/article/10409.
[53] Rout, C.S., et al., Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. Journal of the American Chemical Society, 2013. 135(23): p. 8720-8725.
[54] Sarkar, A., et al., Newly Designed Amperometric Biosensor for Hydrogen Peroxide and Glucose Based on Vanadium Sulfide Nanoparticles. ACS Applied Nano Materials, 2018. 1(3): p. 1339-1347.
[55] Karthik, R., N. Karikalan, and S.-M. Chen, Rapid synthesis of ethyl cellulose supported platinum nanoparticles for the non-enzymatic determination of H2O2. Carbohydrate polymers, 2017. 164: p. 102-108.
[56] Liu, S., et al., Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules, 2010. 43(23): p. 10078-10083.
[57] Kumar, S.A., P.-H. Lo, and S.-M. Chen, Electrochemical analysis of H2O2 and nitrite using copper nanoparticles/poly (o-phenylenediamine) film modified glassy carbon electrode. Journal of The Electrochemical Society, 2009. 156(7): p. E118-E123.
[58] Roushani, M., et al., Amperometric detection of hydrogen peroxide at nano-ruthenium oxide/riboflavin nanocomposite-modified glassy carbon electrodes. Electrochimica Acta, 2013. 113: p. 134-140.
[59] Roushani, M. and B.Z. Dizajdizi, Development of nonenzymatic hydrogen peroxide sensor based on catalytic properties of copper nanoparticles/Rutin/MWCNTs/IL/Chit. Catalysis Communications, 2015. 69: p. 133-137.
[60] Shi, Y., et al., Carbon nanotube decorated with silver nanoparticles via noncovalent interaction for a novel nonenzymatic sensor towards hydrogen peroxide reduction. Journal of Electroanalytical Chemistry, 2011. 656(1-2): p. 29-33.
[61] Wang, L., et al., Architecture of poly (o-phenylenediamine)–Ag nanoparticle composites for a hydrogen peroxide sensor. Electrochimica Acta, 2012. 60: p. 314-320.
[62] Zhang, L., et al., Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochemistry Communications, 2009. 11(4): p. 812-815.
[63] Cui, K., et al., A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochemistry communications, 2008. 10(4): p. 663-667.
[64] Liu, Z., et al., Novel nonenzymatic hydrogen peroxide sensor based on iron oxide–silver hybrid submicrospheres. Talanta, 2010. 81(4-5): p. 1650-1654.
[65] Karuppiah, C., et al., A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2014. 196: p. 450-456.
[66] Zhao, B., et al., Silver microspheres for application as hydrogen peroxide sensor. Electrochemistry Communications, 2009. 11(8): p. 1707-1710.
[67] Butwong, N., et al., A sensitive nonenzymatic hydrogen peroxide sensor using cadmium oxide nanoparticles/multiwall carbon nanotube modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2014. 717: p. 41-46.
[68] Zhang, L., et al., Direct electrocatalytic oxidation of nitric oxide and reduction of hydrogen peroxide based on α-Fe2O3 nanoparticles-chitosan composite. Talanta, 2010. 82(1): p. 196-201.
[69] Zhao, W., et al., A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta, 2009. 80(2): p. 1029-1033.
[70] Kong, L., et al., A one-pot synthetic approach to prepare palladium nanoparticles embedded hierarchically porous TiO2 hollow spheres for hydrogen peroxide sensing. Journal of Solid State Chemistry, 2010. 183(10): p. 2421-2425.
[71] Ping, J., et al., Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide. Microchimica Acta, 2010. 171(1-2): p. 117-123.
[72] Zhang, Z., et al., Sensitive electrochemical sensor for hydrogen peroxide using Fe 3 O 4 magnetic nanoparticles as a mimic for peroxidase. Microchimica Acta, 2011. 174(1-2): p. 183-189.
[73] Xu, B., et al., A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes. Analytica chimica acta, 2010. 674(1): p. 20-26.
[74] Xu, F., et al., Electrochemical behavior of cuprous oxide–reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing. Electrochimica Acta, 2013. 88: p. 59-65.
[75] Niu, X., et al., Platinum nanoparticle-decorated carbon nanotube clusters on screen-printed gold nanofilm electrode for enhanced electrocatalytic reduction of hydrogen peroxide. Electrochimica Acta, 2012. 65: p. 97-103.
[76] Yao, L., Y. Yan, and J.-M. Lee, Synthesis of porous Pd nanostructure and its application in enzyme-free sensor of hydrogen peroxide. ACS Sustainable Chemistry & Engineering, 2017. 5(2): p. 1248-1252.
[77] Bracamonte, M.V., et al., H2O2 sensing enhancement by mutual integration of single walled carbon nanohorns with metal oxide catalysts: the CeO2 case. Sensors and Actuators B: Chemical, 2017. 239: p. 923-932.
[78] Zhang, Y., et al., Electrochemical behavior of caffeic acid assayed with gold nanoparticles/graphene nanosheets modified glassy carbon electrode. Electroanalysis, 2013. 25(5): p. 1230-1236.
[79] Liu, Z., et al., Facile one-pot synthesis of Au–PEDOT/rGO nanocomposite for highly sensitive detection of caffeic acid in red wine sample. Electrochimica Acta, 2016. 196: p. 1-12.
[80] Di Carlo, G., et al., Green synthesis of gold–chitosan nanocomposites for caffeic acid sensing. Langmuir, 2012. 28(12): p. 5471-5479.
[81] Zhang, H., et al., Highly sensitive determination of caffeic acid using a multi-walled carbon nanotubes modified electrode with N-butylpyridinium hexafluorophosphate ionic liquid and chitosan as binders. Int J Electrochem Sci, 2016. 11: p. 2971-2981.
[82] Vilian, A.E., et al., An electrocatalytic oxidation and voltammetric method using a chemically reduced graphene oxide film for the determination of caffeic acid. Journal of colloid and interface science, 2014. 423: p. 33-40.
[83] Cai, N., et al., A fluorometric assay platform for caffeic acid detection based on the G-quadruplex/hemin DNAzyme. Analyst, 2016. 141(14): p. 4456-4462.
[84] Filik, H., et al., Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide–Nafion composite film. Talanta, 2013. 116: p. 245-250.
[85] Puangjan, A. and S. Chaiyasith, An efficient ZrO2/Co3O4/reduced graphene oxide nanocomposite electrochemical sensor for simultaneous determination of gallic acid, caffeic acid and protocatechuic acid natural antioxidants. Electrochimica Acta, 2016. 211: p. 273-288.
[86] Karthik, R., et al., Assessment of divergent functional properties of seed-like strontium molybdate for the photocatalysis and electrocatalysis of the postharvest scald inhibitor diphenylamine. Journal of Catalysis, 2017. 352: p. 606-616.
[87] Bouchard Jr, G.H. and M.J. Sienko, Magnetic susceptibility of barium molybdate (IV) and strontium molybdate (IV) in the range 2-300. degree. K. Inorganic Chemistry, 1968. 7(3): p. 441-443.
[88] Phuruangrat, A., T. Thongtem, and S. Thongtem, Barium molybdate and barium tungstate nanocrystals synthesized by a cyclic microwave irradiation. Journal of Physics and Chemistry of Solids, 2009. 70(6): p. 955-959.
[89] Kumar, J.V., et al., Highly selective electrochemical detection of antipsychotic drug chlorpromazine in drug and human urine samples based on peas-like strontium molybdate as an electrocatalyst. Inorganic Chemistry Frontiers, 2018. 5(3): p. 643-655.
[90] Zhang, C., et al., Well-defined barium molybdate hierarchical architectures with different morphologies: Controllable synthesis, formation process, and luminescence properties. Journal of Alloys and Compounds, 2014. 589: p. 185-191.
[91] OHare, P., Thermochemistry of molybdates III. Standard enthalpy of formation of barium molybdate, and the standard entropy and standard Gibbs energy of formation of the aqueous molybdate ion. The Journal of Chemical Thermodynamics, 1974. 6(5): p. 425-434.
[92] Karthik, R., et al., Eco-friendly Synthesis of Gold Nanoparticles by Using B. javanica Blume Leaves Extract Encapsulated with Graphene Oxide for Selective Electrochemical Detection of Dopamine. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017. 12(2): p. 1474-1491.
[93] Velmurugan, M., et al., Electrochemical preparation of activated graphene oxide for the simultaneous determination of hydroquinone and catechol. Journal of colloid and interface science, 2017. 500: p. 54-62.
[94] Mani, V., et al., Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchimica Acta, 2016. 183(7): p. 2267-2275.
[95] Ramachandran, A., S. Panda, and S.K. Yesodha, Physiological level and selective electrochemical sensing of dopamine by a solution processable graphene and its enhanced sensing property in general. Sensors and Actuators B: Chemical, 2018. 256: p. 488-497.
[96] Kokulnathan, T., et al., Trace level electrochemical determination of the neurotransmitter dopamine in biological samples based on iron oxide nanoparticle decorated graphene sheets. Inorganic Chemistry Frontiers, 2018. 5(3): p. 705-718.
[97] Fu, Y., Q. Sheng, and J. Zheng, The novel sulfonated polyaniline-decorated carbon nanosphere nanocomposites for electrochemical sensing of dopamine. New Journal of Chemistry, 2017. 41(24): p. 15439-15446.
[98] Wiench, P., et al., Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides. Sensors and Actuators B: Chemical, 2018. 257: p. 143-153.
[99] Yang, Z., X. Zheng, and J. Zheng, A facile one-step synthesis of Fe2O3/nitrogen-doped reduced graphene oxide nanocomposite for enhanced electrochemical determination of dopamine. Journal of Alloys and Compounds, 2017. 709: p. 581-587.
[100] Palanisamy, S., et al., Preparation of chitosan grafted graphite composite for sensitive detection of dopamine in biological samples. Carbohydrate polymers, 2016. 151: p. 401-407.
[101] Sakthinathan, S., S.-M. Chen, and W.C. Liao, Multiwalled carbon nanotube supported Schiff base copper complex inorganic nanocomposite for enhanced electrochemical detection of dopamine. Inorganic Chemistry Frontiers, 2017. 4(5): p. 809-819.
[102] Choo, S.-S., et al., Electrochemical detection of dopamine using 3D porous graphene oxide/gold nanoparticle composites. Sensors, 2017. 17(4): p. 861.
[103] Wang, C., et al., A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 2014. 204: p. 302-309.
[104] Fan, Y., et al., Hydrothermal preparation and electrochemical sensing properties of TiO2–graphene nanocomposite. Colloids and Surfaces B: Biointerfaces, 2011. 83(1): p. 78-82.
[105] Han, D., et al., Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan‐graphene modified electrode. Electroanalysis, 2010. 22(17‐18): p. 2001-2008.
[106] Li, J., et al., Graphene–Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine. Analytical Methods, 2012. 4(6): p. 1725-1728.
[107] Kim, Y.-R., et al., Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosensors and Bioelectronics, 2010. 25(10): p. 2366-2369.
[108] Gao, F., et al., Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors and Actuators B: Chemical, 2013. 186: p. 380-387.
論文全文使用權限:同意授權於2023-10-23起公開