現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以同軸噴氣輔助電化學放電加工法於透明硬脆材料之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A study on processing of transparent and brittle materials using coaxial-jet-assisted electro-chemical discharge machining [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:製造科技研究所
畢業學年度:107
畢業學期:第一學期
出版年度:107
中文姓名:陳家昌
英文姓名:Jia-Chang Chen
研究生學號:105568401
學位類別:碩士
語文別:中文
口試日期:2018/10/11
論文頁數:108
指導教授中文名:何昭慶
指導教授英文名:Chao-Ching Ho
口試委員中文名:何昭慶;郭佳儱;林世聰
中文關鍵詞:電化學放電加工透明硬脆材料主軸旋轉同軸噴氣輔助加工品質
英文關鍵詞:Electrochemical Discharge MachiningTransparent and brittle materialsSpindle rotationCoaxial-jet-assisted drillingProcessing quality
論文中文摘要:電化學放電加工法(ECDM)是一對非導電硬脆材料進行材料移除加工的非傳統加工法。為提升電化學放電加工法加工效率,一般採用加大工作電壓或增加電解液濃度的途徑,但加工孔洞也因此產生過切、擴孔及孔洞邊緣熱影響區粗糙的表面。
本研究提出一種創新的複合輔助加工法,使用自製同軸噴氣輔助噴頭,此電化學放電加工法可同時結合工具電極旋轉與同軸噴氣兩種輔助方式。當加工區域的電解液在保持低液面高度,亦能同時更新電解液,使其火花放電集中於工具電極的前端處與被加工材料的接觸面間,同時加工穿孔前,再輔以限制能量的輔助機制。實驗以50 V電壓在5M濃度的KOH電解液中加工1.1 mm厚石英玻璃;實驗結果證實,本研究提出的加工複合輔助法相較於無輔助之加工效率提高61.42%、入口處孔洞邊緣熱影響區面積減少47.72%、出口處孔洞邊緣熱影響區面積減少53.21%、出入口的表面品質與孔洞的真圓度得到改善、工具電極減少軸向損耗39.29%與徑向損耗84.09%。當採用加工複合輔助法以53 V電壓在5M濃度KOH電解液中加工藍寶石,加工深度可達到193 μm。
論文英文摘要:Electrochemical Discharge Machining (ECDM) is a non-traditional processing method for material removal of non-conductive hard and brittle materials. In order to improve the pro-cessing efficiency of the ECDM method, a method of increasing the working voltage or in-creasing the concentration of the electrolyte is generally adopted, but the processed holes also have a surface which is overcut, reamed, and roughened in the heat affected zone of the edge of the hole.
This study proposes an innovative composite auxiliary processing method in which a self-made coaxial jet auxiliary nozzle is used. ECDM method can simultaneously combine the tool electrode rotation and the coaxial jet. When the electrolyte in the processing area maintains a low liquid level, the electrolyte can be renewed at the same time, so that the spark discharge is concentrated between the front end of the tool electrode and the contact surface of the material to be processed. At the same time, the energy is limited before the perforation is processed. In case, this experiment processed 1.1 mm thick quartz glass with 5 M concentration of KOH electrolyte at 50 V. The experimental results confirmed that the processing composite auxiliary method proposed in this study which improved the processing efficiency by 61.42% compared with unassisted, and the area of the heat affected zone at the entrance edge decreased by 47.72%, the area of the heat affected zone at the edge of the hole at the exit was reduced by 53.21%. The surface quality of the entrance and exit and the roundness of the hole were im-proved, and the axial loss of the tool electrode was 39.29% and the radial loss was 84.09%. When the sapphire is processed in a 5 M KOH electrolyte at a voltage of 53 V, the processing depth can reach 193 μm by using a processing composite assist method.
論文目次:摘要 i
ABSTRACT iv
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 改善電化學放電加工法效率 2
1.2.2 提升電化學放電加工法品質 9
1.2.3 加工藍寶石的方法 22
1.3 研究動機與目的 26
1.4 本文架構 27
第二章 實驗基礎原理與加工機制 28
2.1 電化學放電加工法原理介紹 28
2.1.1 電化學放電加工法簡述 28
2.1.2 電化學放電加工的氣泡產生 30
2.1.3 電化學放電加工的火花放電產生 32
2.1.4 材料移除機制 34
第三章 實驗設備介紹 36
3.1 電化學放電加工設備 37
3.1.1 N6705B直流電源暨分析儀 37
3.1.2 ML-808GX壓力吐出機 38
3.1.3 ERX-200精密調壓閥 39
3.1.4 步進三軸加工機 40
3.2 輔助加工監測設備 41
3.2.1 U5857A熱成像儀 41
3.2.2 CW-341千分位移量測計 42
3.2.3 DT2234C光電式轉速計 43
3.2.4 PSN-40壓力傳感器 44
3.3 線上取像設備 45
3.3.1 工業相機 45
3.3.2 MP-07M-110-5M遠心鏡頭 47
3.3.3 燈源設備 48
3.3.4 DE-3350照度計 51
3.3.5 電腦設備 52
3.4 試片檢測與處理設備 53
3.4.1 ATX224電子分析天平 53
3.4.2 LEO-801超音波清洗機 54
3.4.3 光學顯微鏡 54
3.4.4 Q150R離子濺射鍍膜儀 55
3.4.5 能量色散X-射線光譜分析儀 56
3.4.6 掃描電子顯微鏡 56
3.4.7 VR-3100三維輪廓量測儀 57
第四章 電極旋轉複合同軸噴氣輔助電化學放電加工 58
4.1 電極旋轉複合同軸噴氣輔助機制 58
4.1.1 噴頭設計與模擬 58
4.1.2 噴氣壓力測定實驗 61
4.2 加工穿孔能量限制機制 64
4.3 實驗系統架構 66
4.3.1 步進三軸加工機精度介紹 68
4.3.2 工具電極夾持主軸偏擺量測 69
4.4 實驗規劃 71
4.4.1 實驗參數設定 71
4.4.2 實驗步驟 73
4.4.3 實驗流程 74
第五章 結果與分析 75
5.1 石英玻璃加工速率對比 75
5.2 石英玻璃加工品質 77
5.2.1 加工孔洞入口處觀測 77
5.2.2 穿孔加工孔洞出口處觀測 83
5.2.3 結果討論 88
5.3 加工電極損耗 91
5.3.1 量測結果 91
5.3.2 結果討論 95
5.4 藍寶石加工 97
5.4.1 實驗結果 97
5.4.2 結果討論 100
第六章 結論與未來展望 101
6.1 結論 101
6.2 未來展望 102
參考文獻 103
附錄:口試問題與答復 107
論文參考文獻:[1] R. Tölke, A. Bieberle-Hütter, A. Evans, J. L. M. Rupp, and L. J. Gauckler, "Processing of Foturan® glass ceramic substrates for micro-solid oxide fuel cells," Journal of the Euro-pean Ceramic Society, vol. 32, pp. 3229-3238, 2012.
[2] 岡野庄太郎,「水晶周波数制御デバイス」,テクノ出版社,1995 年。
[3] E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufactur-ing, Applications. Springer US, 2009.
[4] T. B. Thoe, D. K. Aspinwall, and M. L. H. Wise, "Review on ultrasonic machining," In-ternational Journal of Machine Tools and Manufacture, vol. 38, pp. 239-255, 1998.
[5] J. A. Plaza, M. J. Lopez, A. Moreno, M. Duch, and C. Cané, "Definition of high aspect ratio glass columns," Sensors and Actuators A: Physical, vol. 105, pp. 305-310, 2003.
[6] M. Bu, T. Melvin, G. J. Ensell, J. S. Wilkinson, and A. G. R. Evans, "A new masking technology for deep glass etching and its microfluidic application," Sensors and Actua-tors A: Physical, vol. 115, no. 2, pp. 476-482, 2004.
[7] I. Basak and A. Ghosh, "Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification," Journal of Materials Pro-cessing Technology, vol. 71, no. 3, pp. 350-359, 1997.
[8] N. Gautam and V. K. Jain, "Experimental investigations into ECSD process using various tool kinematics," International Journal of Machine Tools and Manufacture, vol. 38, no. 1, pp. 15-27, 1998.
[9] Bhattacharyya, B., B. N. Doloi, and S. K. Sorkhel. "Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materi-als," Journal of Materials Processing Technology, vol.95, pp. 145-154, 1999.
[10] Yang, C. T., S. S. Ho, and Bo Huei Yan. "Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM)," Key Engineering Materials, vol. 196, pp. 149-155, 2001.
[11] C.-P. Cheng, K.-L. Wu, C.-C. Mai, C.-K. Yang, Y.-S. Hsu, and B.-H. Yan, "Study of gas film quality in electrochemical discharge machining," International Journal of Ma-chine Tools and Manufacture, vol. 50, no. 8, pp. 689-697, 2010..
[12] B. Jiang, S. Lan, J. Ni, and Z. Zhang, "Experimental investigation of spark generation in electrochemical discharge machining of non-conducting materials," Journal of Materials Processing Technology, vol. 214, no. 4, pp. 892-898, 2014.
[13] B. Jiang, S. Lan, K. Wilt, and J. Ni, "Modeling and experimental investigation of gas film in micro-electrochemical discharge machining process," International Journal of Machine Tools and Manufacture, vol. 90, pp. 8-15, 2015.
[14] Z. Zhi-Ping, S. Hsin-Chuan, H. Fuang-Yuan, and Y. Biing-Hwa, "The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process," Journal of Micromechanics and Microengineering, vol. 17, no. 2, p. 265, 2007.
[15] X. D. Cao, B. H. Kim, and C. N. Chu, "Micro-structuring of glass with features less than 100μm by electrochemical discharge machining," Precision Engineering, vol. 33, no. 4, pp. 459-465, 2009.
[16] C.-K. Yang, C.-P. Cheng, C.-C. Mai, A. Cheng Wang, J.-C. Hung, and B.-H. Yan, "Effect of surface roughness of tool electrode materials in ECDM performance," International Journal of Machine Tools and Manufacture, vol. 50, no. 12, pp. 1088-1096, 2010.
[17] Y. Mochimaru, M. Ota, and K. Yamaguchi, "Micro Hole Processing Using Elec-tro-Chemical Discharge Machining," Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 6, no. 6, pp. 949-957, 2012.
[18] Laio, Y. S., L. C. Wu, and W. Y. Peng. "A study to improve drilling quality of electro-chemical discharge machining (ECDM) process." Procedia CIRP, vol. 6, pp. 609-614, 2013.
[19] Sumit. K. Jui, Abishek. B. Kamaraj, and M. Murali. Sundaram, "High aspect ratio mi-cromachining of glass by electrochemical discharge machining (ECDM)," Journal of Manufacturing Processes, vol. 15, pp. 460-466, 2013.
[20] W. Tang, X. Kang, and W. Zhao, "Enhancement of electrochemical discharge machining accuracy and surface integrity using side-insulated tool electrode with diamond coating," Journal of Micromechanics and Microengineering, vol. 27, no. 6, p. 065013, 2017
[21] 吳東昇,「以機器視覺為基礎之電化學放電於玻璃加工監測系統研究」,國立雲林科技大學,碩士論文,2017年.
[22] Y. Fukuzawa, N. Mohri, T. Tani, A. Muttamara, " Electrical discharge machining proper-ties of noble crystals," Journal of Materials Processing Technology, vol. 149, pp. 393-397, 2004.
[23] 鍾森富,「電化學放加工應用於藍寶石加工之研究」,國立中央大學,碩士論文,2015年.
[24] R. Wüthrich, Micromachining Using Electrochemical Discharge Phenomenon, Ed. Bos-ton: William Andrew Publishing, 2009.
[25] Y. Zhang, Z. Xu, Y. Zhu, and D. Zhu, "Effect of tube-electrode inner structure on machin-ing performance in tube-electrode high-speed electrochemical discharge drilling," Journal of Materials Processing Technology, vol. 231, pp. 38-49, 2016.
[26] J. D. Abou Ziki, L. A. Hof, and R. Wüthrich, "The machining temperature during Spark Assisted Chemical Engraving of glass," Manufacturing Letters, vol. 3, pp. 9-13, 2015.
[27] A. Kulkarni, R. Sharan, and G. Lal, "Measurement of temperature transients in the elec-trochemical discharge machining process," AIP Conference Proceedings, vol. 684, pp. 1069-1074, 2003.
[28] J. A. McGeough, Advanced methods of machining. Springer Science & Business Media, 1988.
[29] V. K. Jain and S. Adhikary, "On the mechanism of material removal in electrochemical spark machining of quartz under different polarity conditions," Journal of Materials Pro-cessing Technology, vol. 200, no. 1, pp. 460-470, 2008.
[30] A. Shamir and A. A. Ishaaya, "Large volume ablation of Sapphire with ultra-short laser pulses," Applied Surface Science, vol. 270, pp. 763-766, 2013.

[31] M. Goud, A. K. Sharma, and C. Jawalkar, "A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate," Precision Engineering, vol. 45, pp. 1-17, 2016.
論文全文使用權限:同意授權於2023-10-22起公開