現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:奈米級氧化鈰基電解質材料之燒結行為與擴散機制探討 [以論文名稱查詢館藏系統]
論文英文名稱:The sintering behavior and diffusion mechanism analysis of nano–size ceria based electrolytes [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:107
畢業學期:第一學期
出版年度:107
中文姓名:林敬原
英文姓名:Ching-Yuan Lin
研究生學號:105788041
學位類別:碩士
語文別:中文
口試日期:2018/07/30
論文頁數:103
指導教授中文名:吳玉娟
指導教授英文名:Yu–Chuan Wu
口試委員中文名:雷健明;邱德威;吳玉娟
中文關鍵詞:燒結行為晶粒成長氧化鈰基電解質溶膠凝膠法
英文關鍵詞:Sintering BehaviorGrain GrowthCeria Based ElectrolytesSol Gel Method
論文中文摘要:本實驗利用溶膠凝膠法合成氧化鈰基電解質材料,藉由摻雜La、Sr、Ca、Sm離子,製備Ce0.8Sm0.2O1.9 (SDC20)、Ce0.8Sm0.15Ca0.025Sr0.025O1.875 (SSCDC)及Ce0.6La0.4O1.8 (LDC46)。煆燒後之粉末經XRD、雷射分析儀、TEM進行分析,結果顯示SDC20、SSCDC和LDC46經煆燒後均無發現二次相,且粒徑D50分別為0.685、1.03和0.822 μm,晶粒大小分別為46、56和35 nm。燒結部分分為等速率燒結與等溫燒結兩部分進行,並利用TMA分析收縮率與收縮速率、相對密度、緻密化速率、擴散機制與活化能,並利用SEM觀察表面形貌、晶粒大小,分析晶粒成長機制,結果顯示隨著升溫速率提升收縮速率會有上升趨勢,SSCDC具有最高之相對密度,其緻密化活化能為436 kJ/mol。
論文英文摘要:In this study, Ce0.8Sm0.2O1.9 (SDC20), Ce0.8Sm0.15Ca0.025Sr0.025O1.875 (SSCDC) and Ce0.6La0.4O1.8 (LDC20) were synthesized by a sol–gel method. The calcined powders were followed by XRD, Lazer light scattering particle analyzer and TEM. The result showed that fluorite–type ceria–based solid solutions. The particle size were fluorite–type ceria–based solid solutions; the particle sizes were 0.685, 1.03 and 0.822μm, respectively; the grain size were 46, 56, and 35 nm. The sintering conditions were divide by isothermal and non-isothermal. The sintering behaviour of ceria powder was investigated.It showed SSCDC has highest densification, and the diensification activation energy was 436 kJ/mol
論文目次:ABSTRACT iv
第1章 緒論 1
1.1 前言 1
1.2 實驗目的 1
第2章 文獻回顧 2
2.1 燃料電池之簡介 2
2.2 固態氧化物燃料電池之電解質 4
2.3 電解質之基本工作原理及種類 4
2.3.1 氧化鈰基電解質 5
2.3.2 奈米合成技術 5
2.4 粉末燒結 5
2.5 燒結基本原理 5
2.6 燒結時的質傳機制[24] 6
2.7 影響燒結因素[23] 9
2.8 燒結理論模型 9
2.8.1 等速率燒結 10
2.8.1.1 緻密化速率探討 11
2.8.2 等溫燒結 13
2.8.3 晶粒成長分析 14
第3章 實驗方法與步驟 18
3.1 粉末合成 18
3.2 試片製備 21
3.3 XRD分析 22
3.4 熱機械性質分析 23
3.5 相對密度分析 24
3.6 雷射光散射式粒徑分析 25
3.7 電子顯微鏡 25
第4章 結果與討論 27
4.1 XRD之分析 27
4.2 晶格常數之分析 28
4.3 雷射光散射式粒徑分析 32
4.4 TEM分析 34
4.5 燒結曲線與機制探討 34
4.5.1 等速率燒結曲線 34
4.5.2 等速率燒結機制 42
4.5.3 等溫燒結曲線 45
4.5.4 等溫燒結機制 50
4.6 微觀結構分析 52
4.6.1 等速率燒結 52
4.6.1.1 SDC20等速率燒結微觀分析 52
4.6.1.2 SSCDC等速率燒結微觀分析 57
4.6.1.3 LDC46等速率燒結微觀分析 62
4.6.2 等溫燒結 68
4.6.2.1 SDC20等溫燒結微觀分析 68
4.6.2.2 SSCDC等溫燒結微觀分析 74
4.6.2.3 LDC46等溫燒結微觀分析 80
4.7 晶粒成長機制分析 87
4.8 阿基米德分析 89
第5章 結論 94
第6章 參考文獻 95
第7章 附錄 101
論文參考文獻:[1] Z. Shao, and S. M. Haile, “A high-performance cathode for the next generation of solid-oxide fuel cells,” Nature, 431 (2004), 256 – 258.
[2] D. L. Maricle, T. E. Swarr, and S. Karavolis, “Enhanced ceria—a low–temperature SOFC electrolyte,” Solid State Ionics, 52 (1992), 173 – 182.
[3] S. Hamakawa, T. Hayakawa, A. P.York, T. Tsunoda, Y. S. Yoon, K. Suzuki, and K. Takehira, “Selective Oxidation of Propene Using an Electrochemical Membrane Reactor with CeO2‐Based Solid Electrolyte,” Journal of The Electrochemical Society, 143 (1996), 1264 – 1268.
[4] S. Le, S. Zhu, X. Zhu, and K. Sun, “Densification of Sm0.2Ce0.8O1.9 with the addition of lithium oxide as sintering aid,” Journal of Power Sources, 222(2013), 367 – 372.
[5] V. Gil, C. Moure, P. Duran, and J. Tartaj, “Low–temperature densification and grain growth of Bi2O3–doped–ceria gadolinia ceramics,” Solid State Ionics, 178 (2007), 359 – 365.
[6] Y. Zhou, and M. N. Rahaman, “Effect of redox reaction on the sintering behavior of cerium oxide,” Acta Materialia, 45(1997), 3635 – 3639.
[7] 林昌明,林志鴻,陳振智,明日之星–燃料電池,長庚科技學刊,22(2015),111 – 117。
[8] M. Alhassan, and M. U. Garba, “Design of an alkaline fuel cell,” Journal of Practices and Technologies, 5 (2006), 99 – 106.
[9] D. Chu, and R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell,” Journal of Power Sources, 80 (1999), 226 – 234.
[10] Y. G. Chun, C. S. Kim, D. H. Peck, and D. R. Shin, “Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes,” Journal of Power Sources, 71 (1998), 174 – 178.
[11] S. Y. Cha, and W. M. Lee, “Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface” Journal of the Electrochemical Society, 146 (1999), 4055 – 4060.
[12] J. M. Thomas, “WR Grove and the fuel cell,” Philosophical Magazine, 92 (2012), 3757 –3765.
[13] E. Carlson, R. Zogg, S. Sriramulu, K. Roth, and J. Brodrick, “Using phosphoric–acid fuel cells for distributed generation,” ASHRAE Journal, 49 (2007), 50.
[14] L. Giorgi, and F. Leccese, “Fuel cells: Technologies and applications,” The Open Fuel Cells Journal, 6 (2013), 1 – 20.
[15] D. Rembelski, J. P. Viricelle, L. Combemale, and M. Rieu, “Characterization and Comparison of Different Cathode Materials for SC‐SOFC: LSM, BSCF, SSC, and LSCF,” Fuel Cells, 12 (2012), 256 – 264.
[16] N. N. Brandon, and D. Thompsett, Fuel Cells Compendium, Elsevier, (2005).
[17] L. Guan, S. Le, X. Zhu, S. He, and K. Sun, “Densification and grain growth behavior study of trivalent MO1.5 (M = Gd, Bi) doped ceria systems,” Journal of the European Ceramic Society, 35 (2015), 2815 – 2821.
[18] Y. P. Fu, S. H. Chen, and J. J. Huang, “Preparation and characterization of Ce0.8M0.2O2–δ (M = Y, Gd, Sm, Nd, La) solid electrolyte materials for solid oxide fuel cells,” International Journal of Hydrogen Energy, 35 (2010), 745 – 752.
[19] K. Yamashita, K. V. Ramanujachary, and M. Greenblatt, “Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics,” Solid State Ionics, 81 (1995), 53 – 60.
[20] Y. Wang, T. Mori, J. G. Li, and Y. Yajima, “Low–temperature fabrication and electrical property of 10 mol% Sm2O3–doped CeO2 ceramics,” Science and Technology of Advanced Materials, 4 (2003), 229 – 238.
[21] Z. Xu, X. Liu, J. Che, and G. Liang, “Preparation and Anti–Sintering Property Study of Nano–La2Ce2O7 Powder,” Applied Physics, 7 (2017), 140 – 148.
[22] Y. P. Fu, C. H. Lin, C. W.L iu, K. W. Tay, and S. B.Wen, “Microwave–induced combustion synthesis and electrical properties of Ce1− xSmxO2−1/2x ceramics,” Journal of Power Sources, 159 (2006), 38 – 41.
[23] S. L. Kang, “Sintering: densification, grain growth and microstructure,” Butterworth–Heinemann, (2004).
[24] 陳邵瑋,LSGM電解質支撐型之全電池製備與燒結機制探討,碩士論文,國立臺北科技大學材料科學與工程研究所,台北,2016。
[25] 陳皇鈞,陶瓷材料概論,曉園出版社,1987。
[26] R. L. Coble, “Sintering crystalline solids. I. Intermediate and final state diffusion models,” Journal of Applied Physics, 32 (1961), 787 – 792.
[27] B. N. Kim, T. S. Suzuki, K. Morita, H. Yoshida, Y. Sakka, and H. Matsubara, “Densification kinetics during isothermal sintering of 8YSZ,” Journal of the European Ceramic Society, 36 (2016), 1269 – 1275.
[28] B. P. Lu, X. F. Liu, and T. T. Shuai, “Study on Microstructure of Continuous Cf/Al Composite Material Prepared by Hot Pressing Diffusion Method,” Advanced Materials Research, 941 (2014), 245 – 250.
[29] A. S. Helle, K. E. Easterling, and M. F. Ashby, “Hot–isostatic pressing diagrams: new developments,” Acta Metallurgica, 33 (1985), 2163 – 2174.
[30] D. L. Johnson, and I. B. Cutler, “Diffusion sintering: I, initial stage sintering models and their application to shrinkage of powder compacts,” Journal of the American Ceramic Society, 46 (1963), 541 – 545.
[31] T. S. Zhang, L. B. Kong, X. C. Song, Z. H. Du, W. Q. Xu, and S. Li, “Densification behaviour and sintering mechanisms of Cu–or Co–doped SnO2: A comparative study,” Acta Materialia, 62 (2014), 81 – 88.
[32] M. J. Bannister, “Shape sensitivity of initial sintering equations,” Journal of the American Ceramic Society, 51 (1968), 548 – 553.
[33] J. L. Woolfrey, and M. J. Bannister, “Nonisothermal Techniques for Studying Initial‐Stage Sintering,” Journal of the American Ceramic Society, 55 (1972), 390 – 394.
[34] L. Cheng, L. Liu, Q. Ma, and S. Liu, “Relationship between densification behavior and stabilization of quasi–liquid grain boundary layers in CuO–doped 0.7 CaTiO3–0.3 NdAlO3 microwave ceramics,” Scripta Materialia, 111 (2016), 102 – 105.
[35] D. L. Johnson, “New Method of Obtaining Volume, Grain‐Boundary, and Surface Diffusion Coefficients from Sintering Data,” Journal of Applied Physics, 40 (1969), 192–200.
[36] C. Greskovich, and K. W. Lay, “Grain growth in very porous Al2O3 compacts,” Journal of the American Ceramic Society, 55 (1972), 142 – 146.
[37] H. Su, and D. L. Johnson, “Master sintering curve: a practical approach to sintering,” Journal of the American Ceramic Society, 79 (1996), 3211 – 3217.
[38] Z. He, H. Yuan, J. A. Glasscock, C. Chatzichristodoulou, J. W. Phair, A. Kaiser, and Ramousse, S, “Densification and grain growth during early–stage sintering of Ce0. 9Gd0. 1O1. 95− δ in a reducing atmosphere,” Acta Materialia, 58 (2010), 3860 – 3866.
[39] J. G. Li, and X. Sun, “Synthesis and sintering behavior of a nanocrystalline α-alumina powder. Acta Materialia,” 48 (2000), 3103 – 3112.
[40] E. A. Holm, and S. M. Foiles, “How grain growth stops: A mechanism for grain–growth stagnation in pure materials,” Science, 328 (2010), 1138 – 1141.
[41] D. S. Aidhy, Y. Zhang, and W. J. Weber, “A fast grain–growth mechanism revealed in nanocrystalline ceramic oxides,” Scripta Materialia, 83 (2014), 9 – 12.
[42] J. E.Burke, and D. Turnbull, “Recrystallization and grain growth,” Progress in Metal Physics, 3 (1952), 220 – 292.
[43] P. K. Kulriya, T. Yao, S. M. Scott, S. Nanda, and J. Lian, “Influence of grain growth on the structural properties of the nanocrystalline Gd2Ti2O7,” Journal of Nuclear Materials, 487 (2017), 373 – 379.
[44] L. J. Moore, R. D. Dear, M. D. Summers, R. P. Dullens, and G. A. Ritchie, “Direct observation of grain rotation–induced grain coalescence in two–dimensional colloidal crystals,” Nano Letters, 10 (2010), 4266 – 4272.
[45] A. J. Haslam, S. R. Phillpot, D. Wolf, D. Moldovan, and H. Gleiter, “Mechanisms of grain growth in nanocrystalline fcc metals by molecular–dynamics simulation,” Materials Science and Engineering, 318 (2001), 293 – 312.
[46] H. V. Atkinson, “Theories of normal grain growth in pure single phase systems,” Acta Metallurgica, 36 (1988), 469 – 491.
[47] A. K. Mishra, and L. Huang, “TiO2‐Decorated Graphite Nanoplatelet Nanocomposites for High‐Temperature Sensor Applications,” Small, 11 (2015), 361 – 366.
[48] T. Ohuchi, and M. Nakamura, “Grain growth in the forsterite–diopside system,” Physics of the Earth and Planetary Interiors, 160 (2007), 1 – 21.
[49] A. A.Palmeira, M. J.Bondioli, K. Strecker, and C. Dos Santos, “Densification and grain growth of nano–and micro–sized Y–TZP powders,” Ceramics International, 42 (2016), 2662 – 2669.
[50] J. Luo, S. Adak, and R. Stevens, “Microstructure evolution and grain growth in the sintering of 3Y–TZP ceramics,” Journal of materials science, 33 (1998), 5301 – 5309.
[51] R. Chaim, “Activation energy and grain growth in nanocrystalline Y–TZP ceramics,” Materials Science and Engineering, 486 (2008), 439 – 446.
[52] N. Clavier, R. Podor, L. Deliere, J. Ravaux, and N. Dacheux, “Combining in situ HT–ESEM observations and dilatometry: An original and fast way to the sintering map of ThO2,” Materials Chemistry and Physics, 137 (2013), 742 – 749.
[53] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallographica, 32 (1976), 751 – 767.
[54] P. Maheshwari, Z. Z. Fang, and H. Y. Sohn, “Early–stage sintering densification and grain growth of nanosized WC–Co powders,” International Journal of Powder Metallurgy, 43 (2007), 41 – 47.
論文全文使用權限:同意授權於2023-10-18起公開