現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:電解質中對苯二酚和對苯二胺雙氧化還原添加劑對活性碳超級電容器氧化還原行為研究 [以論文名稱查詢館藏系統]
論文英文名稱:Investigating the Redox Behavior of Activated Carbon Supercapacitors with Hydroquinone and p-Phenylenediamine Dual Redox Additives in the Electrolyte [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程與生物科技系化學工程碩士班
畢業學年度:107
畢業學期:第一學期
出版年度:107
中文姓名:陳亦丞
英文姓名:Yi-Cheng Chen
研究生學號:105738501
學位類別:碩士
語文別:中文
口試日期:2018/09/17
論文頁數:67
指導教授中文名:林律吟
指導教授英文名:Lu-Yin Lin
口試委員中文名:陳柏均;李文亞;蘇威年;王丞浩
口試委員英文名:Po-Chun Chen;Wen-Ya Lee;Wei-Nien Su;Chen-Hao, Wang
中文關鍵詞:氧化還原添加劑循環伏安法恆電流充放電超級電容器氫醌對苯二胺
英文關鍵詞:redox additivesCyclic voltammetryGalvanostatic currentSupercapacitorsHydroquinonep-phenylenediamine
論文中文摘要:超級電容器兼具鋰離子電池與傳統電容器的優點,可同時達到高功率密度及高能量密度,因此逐漸成為儲能元件應用主流之一。改善超級電容器儲能能力的方式包含選用高電化學活性物質作為電極材料、增加電極材料比表面積及使用可產生較多氧化還原反應的電解液。使用活性碳作為電極材料的超級電容器,儲能機制為電解液離子在碳材表面的吸脫附,以及活性碳上官能基與電解液離子間發生的法拉第氧化還原反應,故選用活性碳作為電極材料應用於超級電容器,可兼備電雙層離子吸脫附及類電池法拉第氧化還原反應的儲能效果。另外,研究學者近年來藉由添加氧化還原添加劑於電解液,增加電解液離子於電極表面及電解液離子與電極材料間的氧化還原反應。而不同氧化還原添加劑預期將於不同電位產生氧化還原反應,因此添加兩種以上的氧化還原添加劑於電解液中,預期可擴大電位窗並疊加鄰近氧化還原峰,形成協同效應以改善電極的比電容值。
本論文比較PVDF及LA132作為增黏劑於活性碳電極中,觀察其內阻及擴散速率等電化學表現。並搭配以硫酸水溶液為主並添加氧化還原添加劑對苯二酚(hydroquinone, HQ) 和對苯二胺(p-Phenylenediamine, PPD) 的電解液製備超級電容器。利用HQ及PPD作為氧化還原添加劑,於電解液中均可產生高可逆性的法拉第氧化還原反應。本論文亦使用循環伏安法、恆電流充放電和電化學交流阻抗技術評估超級電容器的電化學性質。結果發現使用單純硫酸水溶液作為電解液時,活性碳電極於2 A/g的電流密度下可達64.80 F/g的比電容值。而當氧化還原添加劑HQ 及PPD同時加入電解液,於最佳氧化還原添加劑濃度與比例的電解液中,活性碳電極於相同量測條件下可達234.45 F/g的比電容值,優於添加單一氧化還原添加劑HQ 及PPD於電解液中所量測的活性碳電極比電容值,分別為138.75 和98.75 F/g。此研究結果顯示添加多種氧化還原添加劑,可藉由增加氧化還原反應改善超級電容器的比電容值。使用LA132活性碳電極所組成的對稱型超級電容器,搭配含有最佳濃度與比例的HQ與PPD硫酸電解液,在2 A/g下可達116.33 F/g (0.74 F/cm2) 的比電容值,以及在功率密度3000 W/cm2 下仍可保有3.75 Wh/kg的能量密度。
論文英文摘要:Supercapacitor (SC) has attracted intensive attention due to its high power and energy densities, which is considered to be better energy storage devices than the lithium-ion batteries and conventional capacitors. Developing electrochemically active materials with large specific surface area as electrode materials and incorporating electrolytes with abundant redox reactions are widely adopted to improve the energy storage capacity of SC. On the other hand, the activated carbon (AC) electrode can store charges using two ways. One is to provide large surface area for ions adsorption and desorption. The other is to generate abundant Faradaic redox reaction at the interface between its functional groups and the electrolyte. Hence, applying the activated carbon electrode for SC is expected to combine both of the charge storage mechanisms for the ions adsorption/desorption and Faradaic redox reactions.
In addition, researchers have incorporated redox additives in the electrolyte to increase the redox reactions at the electrolyte and the electrode interface. It is well-know that different redox additives generate redox reactions at different potentials. Therefore, incorporating two or more redox additives in the electrolyte is expected to enlarge the operating potential window and induce synergistic effect to improve the electrocapacitive performance for the SC. PVDF and LA132 were used as adhesion promoters in activated carbon electrodes, and their electrochemical performances such as internal resistance and diffusion rate were observed. A supercapacitor was prepared with an electrolyte containing a sulfuric acid aqueous solution and a redox additive hydroquinone (HQ) and p-Phenylenediamine (PPD). The HQ and PPD are attractive redox additives for producing highly reversible Faradaic redox reactions for SC. The electrochemical properties of SC are evaluated by using cyclic voltammetry, galvanostatic charge and discharge, and electrochemical impedance spectroscopy techniques. The AC electrode in the H2SO4 aqueous solution attains a specific capacitance (CF) of 54.90 F/g at 2 A/g, while that in the H2SO4 aqueous solution with the optimized concentration and ratio of HQ and PPD reaches a higher CF value of 234.45 F/g at the same condition. However, smaller CF values of 136.35 and 100.35 F/g at 2 A/g are respectively obtained for the AC electrode in the electrolyte containing only the single redox additive of HQ and PPD. The result suggests that incorporating multiple redox additives in the electrolyte can enhance the specific capacitance of the SC electrode by increasing the redox reaction at the electrode and electrolyte interface. Last, a symmetric supercapacitor is prepared using the activated carbon electrode and the H2SO4 aqueous solution with the optimized HQ and PPD amounts. A CF value of 25.20 F/g (0.12 F/cm2) and an energy density of 1.72 W h/kg at power density 612.50 W/cm2 are successfully achieved.
論文目次:目 錄

摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 超級電容器簡介 4
2.2 超級電容器儲能機制 6
2.3 超級電容器電極材料 8
2.3.1 碳材 8
2.3.2 導電高分子 10
2.3.3 金屬化合物 11
2.4 超級電容器電解質 13
2.4.1 電解質分類(依溶劑) 15
2.4.2 氧化還原添加劑 18
第三章 實驗方法 21
3.1 藥品 21
3.2 儀器 23
3.3 超級電容器製備 27
3.3.1 活性碳電極之製備 27
3.3.2 氧化還原電解液之製備 28
第四章 物性與電化學分析原理 29
4.1 多功能場發射掃描電子顯微鏡 (Multi-functional Field-Emission Scanning Electron Microscope, FE-SEM) 29
4.2 X光繞射儀 (X-ray diffraction, XRD) 31
4.3 拉曼光譜儀 (Raman spectroscopy) 32
4.4 電化學分析 (Electrochemical analysis) 33
4.4.1 循環伏安法 (Cyclic voltammetry, CV) 33
4.4.2 恆電流充放電量測 (Galvanostatic charge-discharge measurement, GCD) 35
4.4.3 電化學交流阻抗(Electrochemical impedance spectroscopy, EIS) 36
第五章 結果與討論 38
5.1 物性分析 38
5.1.1 活性碳電極材料結構分析 38
5.1.2 活性碳電極材料組成分析 39
5.1.3 電解液離子導電率 40
5.2 電化學分析 42
5.2.1 使用H2SO4、KNO3、KOH電解液量測活性電極電化學表現分析 42
5.2.2 使用不同濃度氧化還原添加劑電解液量測之活性電極電化學表現分析 44
5.2.3 使用最佳電極/電解液製備之超級電容器電化學表現分析 49
第六章 結論與建議 60
6.1 結論 60
6.2 建議 62
參考文獻 63
論文參考文獻:1. Q. Meng; K. Cai; Y. Chen; L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268-285.
2. http://www.enedu.org.tw/
3. S. T. Senthilkumar; R. K. Selvan; J. S. Melo, Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors. J. Mater. Chem. A 2013, 1 (40), 12386.
4. S. Roldán; M. Granda; R. Menéndez; R. Santamaría; C. Blanco, Supercapacitor modified with methylene blue as redox active electrolyte. Electrochim. Acta 2012, 83, 241-246.
5. S. Roldán; Z. González; C. Blanco; M. Granda; R. Menéndez; R. Santamaría, Redox-active electrolyte for carbon nanotube-based electric double layer capacitors. Electrochim. Acta 2011, 56 (9), 3401-3405.
6. S. Roldán; M. Granda; R. Menéndez; R. Santamaría; C. Blanco, Mechanisms of Energy Storage in Carbon-Based Supercapacitors Modified with a Quinoid Redox-Active Electrolyte. J. Phys. Chem. C 2011, 115 (35), 17606-17611.
7. B. Rausch; M. D. Symes; L. Cronin, A bio-inspired, small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting. J. Am. Chem. Soc. 2013, 135 (37), 13656-9.
8. C. Singh; A. Paul, Physisorbed Hydroquinone on Activated Charcoal as a Supercapacitor: An Application of Proton-Coupled Electron Transfer. J. Phys. Chem. C 2015, 119 (21), 11382-11390.
9. M. Hébert; D. Rochefort, Electrode passivation by reaction products of the electrochemical and enzymatic oxidation of p-phenylenediamine. Electrochim. Acta 2008, 53 (16), 5272-5279.
10. N. J. Ke; S. S. Lu; S. H. Cheng, A strategy for the determination of dopamine at a bare glassy carbon electrode: p-Phenylenediamine as a nucleophile. Electrochem. Commun. 2006, 8 (9), 1514-1520.
11. G. Ma; E. Feng; K. Sun; H. Peng; J. Li; Z. Lei, A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor. Electrochim. Acta 2014, 135, 461-466.
12. C. M. Chuang; C. W. Huang; H. Teng; J. M. Ting, Effects of Carbon Nanotube Grafting on the Performance of Electric Double Layer Capacitors. Energy Fuels 2010, 24 (12), 6476-6482.
13. J. R. Miller, Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim. Acta 2006, 52 (4), 1703-1708.
14. C. C. Hu; C. C. Wang, Nanostructures and Capacitive Characteristics of Hydrous Manganese Oxide Prepared by Electrochemical Deposition. J. Electrochem. Soc. 2003, 150 (8), A1079.
15. Y. S. Chen; C. C. Hu, Capacitive Characteristics of Binary Manganese-Nickel Oxides Prepared by Anodic Deposition. Electrochem. Solid-State Lett. 2003, 6 (10), A210.
16. Y. U. Jeong; A. Manthiram, Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes. J. Electrochem. Soc. 2002, 149 (11), A1419.
17. C. Z. Yuan; B. Gao; X. G. Zhang, Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor. J. Power Sources 2007, 173 (1), 606-612.
18. J. P. Zheng, Theoretical Energy Density for Electrochemical Capacitors with Intercalation Electrodes. J. Electrochem. Soc. 2005, 152 (9), A1864.
19. J. H. Park; O. O. Park; K. H. Shin; C. S. Jin; J. H. Kim, An Electrochemical Capacitor Based on a Ni(OH)2/Activated Carbon Composite Electrode. Electrochem. Solid-State Lett. 2002, 5 (2), H7.
20. R. N. Reddy; R. G. Reddy, Sol–gel MnO2 as an electrode material for electrochemical capacitors. J. Power Sources 2003, 124 (1), 330-337.
21. Y. Zhang; H. Feng; X. Wu; L. Wang; A. Zhang; T. Xia; H. Dong; X. Li; L. Zhang, Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy 2009, 34 (11), 4889-4899.
22. H. Guan; L. Z. Fan; H. C. Zhang; X. H. Qu, Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim. Acta 2010, 56 (2), 964-968.
23. P. Yang; W. Mai, Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274-290.
24. M. Conte, Supercapacitors technical requirements for new applications. Fuel Cells 2010, 10 (5), 806-818.
25. U. P. Sabatier, Materials for electrochemical capacitors. Nat. Mater. 2008, 7.
26. C. Portet; P. L. Taberna; P. Simon; E. Flahaut; C. Laberty Robert, High power density electrodes for Carbon supercapacitor applications. Electrochim. Acta 2005, 50 (20), 4174-4181.
27. J. i. Hong; I. H. Yeo; W. k. Paik, Conducting Polymer with Metal Oxide for Electrochemical Capacitor: Poly(3,4-ethylenedioxythiophene) RuOx Electrode. J. Electrochem. Soc. 2001, 148 (2), A156.
28. K. W. Nam; K. H. Kim; E. S. Lee; W. S. Yoon; X. Q. Yang; K. B. Kim, Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates. J. Power Sources 2008, 182 (2), 642-652.
29. T. Y. Wei; C. H. Chen; K. H. Chang; S. Y. Lu; C. C. Hu, Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route. Chem. Mater. 2009, 21 (14), 3228-3233.
30. E. Beaudrouet; A. Le Gal La Salle; D. Guyomard, Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials. Electrochim. Acta 2009, 54 (4), 1240-1248.
31. Y. H. Lee; J. G. Oh; H. S. Oh; H. Kim, Novel method for the preparation of carbon supported nano-sized amorphous ruthenium oxides for supercapacitors. Electrochem. Commun. 2008, 10 (7), 1035-1037.
32. L. Y. Gong; X. H. Liu, Facile synthesis and capacitive characteristics of Co(OH)2 nanoflakes via a solid-reaction route at room temperature. Mater. Lett. 2011, 65 (13), 2025-2028.
33. Z. Li; H. Bao; X. Miao; X. Chen, A facile route to growth of gamma-MnOOH nanorods and electrochemical capacitance properties. J. Colloid Interface Sci. 2011, 357 (2), 286-91.
34. F. Cao; G. X. Pan; P. S. Tang; H. F. Chen, Hydrothermal-synthesized Co(OH)2 nanocone arrays for supercapacitor application. J. Power Sources 2012, 216, 395-399.
35. C. S. Patrice Simon, Jean Franc ¸ois Fauvarque, Alexis Laforgue, Polythiophene-based supercapacitors. J. Power Sources 1999, 80, 142-148.
36. G. A. Snook; P. Kao; A. S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196 (1), 1-12.
37. H. Li; J. Wang; Q. Chu; Z. Wang; F. Zhang; S. Wang, Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power Sources 2009, 190 (2), 578-586.
38. Y. Fang; J. Liu; D. J. Yu; J. P. Wicksted; K. Kalkan; C. O. Topal; B. N. Flanders; J. Wu; J. Li, Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. J. Power Sources 2010, 195 (2), 674-679.
39. E. G. Bushueva; P. S. Galkin; A. V. Okotrub, Double layer supercapacitor properties of onion-like carbon materials. phys. stat. sol 2008, 245 (10), 2296–2299.
40. M. Inagaki; H. Konno; O. Tanaike, Carbon materials for electrochemical capacitors. J. Power Sources 2010, 195 (24), 7880-7903.
41. R. Yadav; C. K. Dixit, Synthesis, characterization and prospective applications of nitrogen-doped graphene: A short review. J. Adv. Mater. Devices 2017, 2 (2), 141-149.
42. M. J. Bleda Martínez; J. A. Maciá Agulló; D. Lozano Castelló; E. Morallón; D. Cazorla Amorós; A. Linares Solano, Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon 2005, 43 (13), 2677-2684.
43. E. R. Pinero; D. C. Amoros; A. L. Solano; S. Delpeux; E. Frackowiak; K. Szostak; F. Beguin, High surface area carbon nanotubes prepared by chemical activation. Carbon 2002, 40, 1597-1617.
44. H. Zhang; G. Cao; Y. Yang; Z. Gu, Capacitive performance of an ultralong aligned carbon nanotube electrode in an ionic liquid at 60°C. Carbon 2008, 46 (1), 30-34.
45. S. P. A. Clemente, E. Spila, B. Scrosati Solid-state, polymer-based, redox capacitors Solid State Ionics 1996, 85, 273-277.
46. P. S. Alexis Laforgue, Christian Sarrazin, Jean Franc ¸ois Fauvarque, Polythiophene-based supercapacitors. J. Power Sources 1999, 80, 142-148.
47. K. Lota; V. Khomenko; E. Frackowiak, Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J. Phys. Chem. Solids 2004, 65 (2-3), 295-301.
48. G. Wang; L. Zhang; J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41 (2), 797-828.
49. Z. A. Hu; Y. L. Xie; Y. X. Wang; L. P. Mo; Y. Y. Yang; Z. Y. Zhang, Polyaniline/SnO2 nanocomposite for supercapacitor applications. Mater. Chem. Phys. 2009, 114 (2-3), 990-995.
50. C. F. Yu; L. Y. Lin, Effect of the bimetal ratio on the growth of nickel cobalt sulfide on the Ni foam for the battery-like electrode. J Colloid Interface Sci 2016, 482, 1-7.
51. S. E. Chun; B. Evanko; X. Wang; D. Vonlanthen; X. Ji; G. D. Stucky; S. W. Boettcher, Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat. Commun. 2015, 6, 7818.
52. Q. Li; K. Li; C. Sun; Y. Li, An investigation of Cu2+ and Fe2+ ions as active materials for electrochemical redox supercapacitors. J. Electroanal. Chem. 2007, 611 (1-2), 43-50.
53. L. H. Su; X. G. Zhang; C. H. Mi; B. Gao; Y. Liu, Improvement of the capacitive performances for Co-Al layered double hydroxide by adding hexacyanoferrate into the electrolyte. Phys. Chem. Chem. Phys. 2009, 11 (13), 2195-202.
54. S. T. Senthilkumar; R. K. Selvan; N. Ponpandian; J. S. Melo; Y. S. Lee, Improved performance of electric double layer capacitor using redox additive (VO2+/VO2+) aqueous electrolyte. J. Mater. Chem. A 2013, 1 (27), 7913.
55. S. T. Senthilkumar; R. K. Selvan; Y. S. Lee; J. S. Melo, Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A 2013, 1 (4), 1086-1095.
56. J. Wu; H. Yu; L. Fan; G. Luo; J. Lin; M. Huang, A simple and high-effective electrolyte mediated with p-phenylenediamine for supercapacitor. J. Mater. Chem. A 2012, 22 (36), 19025.
57. J. Zhong; L. Q. Fan; X. Wu; J. H. Wu; G. J. Liu; J. M. Lin; M. L. Huang; Y. L. Wei, Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes. Electrochim. Acta 2015, 166, 150-156.
58. C. Zhong; Y. Deng; W. Hu; J. Qiao; L. Zhang; J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44 (21), 7484-539.
59. A. B. Yaroslavtsev, Solid electrolytes: main prospects of research and development. Russ. Chem. 2016, 85, 1255-1276.
60. J. J. Z. a. R. S. S. Petty Weeks, Proton conducting interpenetrating polymer networks Solid State Ionics 1988, 31, 117-125.
61. M. M. Yoshiharu Matsuda, Masashi Ishikawa, and Mitsuo Ihara New Electric Double-Layer Capacitors Using Polymer Solid Electrolytes Containing Tetraalkylammonium Salts J. Electrochem. Soc. 1993.
62. H. K. Kim; S. H. Cho; Y. W. Ok; T. Y. Seong; Y. S. Yoon, All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes. J. Vac. Sci. Technol. B 2003, 21 (3), 949.
63. Q. M. Tu; L. Q. Fan; F. Pan; J. L. Huang; Y. Gu; J. M. Lin; M. L. Huang; Y. F. Huang; J. H. Wu, Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors. Electrochim. Acta 2018, 268, 562-568.
64. 羅聖全, 研發奈米科技的基本工具之一 電子顯微鏡介紹 – SEM. 小奈米大世界.
65. 鄭. 林麗娟, X光繞射應用簡介. 工業材料雜誌 2002.
66. 台灣喬哈斯科技, 拉曼光譜儀(Raman)的原理. 2016.
67. https://www.materialsnet.com.tw/DocView.aspx?id=11514
68. https://zhuanlan.zhihu.com/p/29092156
69. P. Delhaes; M. Couzi; M. Trinquecoste; J. Dentzer; H. Hamidou; C. Vix-Guterl, A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes. Carbon 2006, 44 (14), 3005-3013.
70. R. L. M. Kenneth G. Ray III, Characterization of the surface carbonyl and hydroxyl coverage on glassy carbon electrodes using Raman spectroscopy. J. Electroanal. Chem. 1999.
71. X. Zhang; X. Wang; J. Su; X. Wang; L. Jiang; H. Wu; C. Wu, The effects of surfactant template concentration on the supercapacitive behaviors of hierarchically porous carbons. J. Power Sources 2012, 199, 402-408.
72. H. Wu; X. Wang; L. Jiang; C. Wu; Q. Zhao; X. Liu; B. Hu; L. Yi, The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon. J. Power Sources 2013, 226, 202-209.
73. C. Wu; M. R. Sperling; S. M. Falowski; A. V. Chitale; M. Werner-Wasik; J. J. Evans; D. W. Andrews; A. D. Sharan, Radiosurgery for the treatment of dominant hemisphere periventricular heterotopia and intractable epilepsy in a series of three patients. Epilepsy Behav. Case Rep. 2013, 1, 1-6.
74. P. Veerakumar; R. Madhu; S.-M. Chen; C.-T. Hung; P.-H. Tang; C.-B. Wang; S.-B. Liu, Porous carbon-modified electrodes as highly selective and sensitive sensors for detection of dopamine. Analyst 2014, 139 (19), 4994-5000.
75. P. M. I.; F. A. B.; T.-K. S. M.; K. M. I., The Importance of Surface Coverage in the Electrochemical Study of Chemically Modified Electrodes. Electroanalysis 2000, 12 (18), 1498-1501.
論文全文使用權限:同意授權於2018-09-21起公開