現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:雙向傳輸之全橋CLLC諧振轉換器 研製 [以論文名稱查詢館藏系統]
論文英文名稱:Design and Implementation of Bidirectional Full Bridge CLLC Resonant Converter [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:電機工程系電力電子產業碩士專班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:陳利溢
英文姓名:Chen,Li-Yi
研究生學號:105E08009
學位類別:碩士
語文別:中文
口試日期:2018/07/24
論文頁數:74
指導教授中文名:賴炎生
口試委員中文名:黃明熙;陳柏元
中文關鍵詞:CLLC諧振轉換器零電壓切換雙向傳輸
英文關鍵詞:CLLC Resonant ConverterZero Voltage SwitchingBidirectional Power Flow
論文中文摘要:本論文主要研製一台雙向傳輸CLLC諧振轉換器實現雙向功率傳輸控制,其高壓側與低壓側均可達到柔切,以減少高低壓側開關元件的切換損失,並藉由改變開關切換頻率,來達到輸出電壓穩壓之目的。
本論文使用德州儀器公司所生產之數位訊號處理器TMS320F28335為控制平台。所研製CLLC諧振轉換器為400V¬-48V雙向傳輸轉換器,分為降壓模式與升壓模式兩種模式,額定功率為720W。實驗結果顯示,在降壓模式,高壓側開關可達到零電壓切換低壓側開關本體二極體可達成零電流截止,且操作頻率為100 kHz~97 kHz,實測效率可達91.6%。升壓模式時,低壓側開關可達到零電壓切換,操作頻率為103 kHz~122 kHz,實測效率可達93%。
論文英文摘要:The objective of this thesis is to design and implement a CLLC resonant converter with bidirectional power flow control. Both the high voltage side and low voltage side can achieve soft switching and thereby reducing switching losses. The output voltage is regulated by varying switching frequency.
The digital signal processor, TMS320F28335, is used as control platform for the verification of design and implementation. The design specifications include: high voltage side voltage 400 V dc link and load voltage side voltage 48 V, total power rating of 720 W. For the buck mode , switching frequency from 100 kHz~97 kHz. And the maximum efficiency is up to 91.6%, zero voltage switching for high voltage side device and zero current switching can be for load voltage side diode achieved. For the boost mode , switching frequency varieties from 103 kHz~122 kHz. The maximum efficiency is up to 93% and, zero voltage switching for the low voltage side device can be achieved.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究綱要 5
第二章 雙向傳輸CLLC諧振轉換器原理與分析 6
2.1 雙向傳輸CLLC諧振轉換器介紹 6
2.2 雙向傳輸CLLC諧振轉換器特性分析 7
2.3 CLLC諧振轉換器諧振點分析 10
2.3.1 h值變化對增益曲線影響 14
2.3.2 Q值變化對增益曲線影響 17
2.4 雙向傳輸CLLC諧振轉換器動作原理分析 20
第三章 雙向傳輸CLLC諧振轉換器電路設計 42
3.1 CLLC諧振轉換器電路元件設計 42
3.2 CLLC開關元件選用 44
3.3 諧振元件計算 47
3.4 變壓器設計 50
3.5 諧振電感設計 52
3.6 閉迴路設計 54
3.6.1 Buck mode控制器設計 54
3.6.2 Boost mode控制器設計 56
第四章 實驗結果 59
4.1 實驗規格 59
4.2 實驗結果 61
4.3 效率統計 67
第五章 結論與未來展望 69
5.1 結論 69
5.2 未來展望 69
參考文獻 70
符號彙編 73
論文參考文獻:[1] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. S. Lai, “Design of bidirectional DC–DC resonant converter for vehicle-to-grid (V2G) applications, ” IEEE Transactions on Transportation Electrification, Oct. 2015.
[2] W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin, and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics, ” National Renewable Energy
Laboratory (NREL), Golden, CO.2012.
[3] C. T. Li, C. Ahn, H. Peng, and J. Sun, “Synergistic control of plug-in vehicle charging and wind power scheduling, ” IEEE Transactions on Power Systems, May 2013.
[4] K. H. Chao and C. H. Huang, “Bidirectional dc–dc soft-switching converter for stand-alone photovoltaic power generation systems, ” IET Power
Electron, Jun 2014.
[5] C. C. Lin, L. S. Yang, and G. W. Wu, “Study of a non-isolated bidirectional dc–dc converter, ” IET Power Electron, Jan. 2013.
[6] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation, ” IEEE
Transactions on Smart Grid, Mar. 2015.
[7] B. L. Narasimharaju, S. P. Dubey, and S. P. Singh, “Design and analysis of coupled inductor bidirectional dc–dc convertor for high-voltage diversity applications, ” IET Power Electron, Aug.2012.
[8] J. Park, and S. Choi, “Design and control of a bidirectional resonant dc–dc converter for automotive engine/battery hybrid power generators, ” IEEE Transactions on Power Electron, Jul.2014.
[9] F. M. Ibanez, J. M. Echeverria, J. Vadillo, and L. Fontan, “A step-up bidirectional series resonant dc/dc converter using a continuous current mode,”
IEEE Transactions on Power Electronics, Mar.2015.
[10] Y. Du, S. Lukic, B. Jacobson, and A. Huang, “Review of high power isolated bi-directional dc–dc converters for PHEV/EV dc charging infrastructure,” IEEE Energy Conversion Congress and Exposition, Sept. 2011.
[11] T. Jiang, J. Zhang, X. Wu, K. Sheng, and Y. Wang, “A bidirectional LLC resonant converter with automatic forward and backward mode transition,”IEEE Transactions on Power Electron, Feb. 2015.
[12] L. Corradini, D. Seltzer, D. Bloomquist, R. Zane, D. Maksimovic, and B. Jacobson, “Zero voltage switching technique for bidirectional dc/dc converters,” IEEE Transactions on Power Electronics, Apr.2014.
[13] W. Yu, and J. S. Lai, “Ultra high efficiency bidirectional dc–dc converter with multi-frequency pulse width modulation, ” Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, Feb.2008.
[14] W. Yu, H. Qian, and J. S. Lai, “Design of high-efficiency bidirectional dc–dc converter and high-precision efficiency measurement, ” 34th Annual Conference of IEEE Industrial Electronics, Nov. 2008.

[15] J. Zhang, J. S. Lai, R. Y. Kim, and W. Yu, “High-power density design of a soft-switching high-power bidirectional dc–dc converter,” IEEE Transactions on Power Electronics, Jul.2007.
[16] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1kW isolated DC-DC converters for bidirectional EV charging systems,” IEEE Transactions on Transportation Electrification, Mar. 2017.
[17] D. Costinett, D. Maksimovic, and R. Zane, “Design and control for high efficiency in high step-down dual active bridge converters operating at high switching frequency,” IEEE Transactions on Power Electronics, Aug. 2013.
[18] IPW65R080CFD, Datasheet, Infineon, Sep 2011.
[19] IRFB4110PBF, Datasheet, International Rectifier, April 2014.
[20] 黃筠之,「利用混和式切換技術之LLC諧振轉換器的研製」,國立台北科技大學電機工程系碩士學位論文,104年7月。
[21] 3F36, Datasheet, ferroxcube, Jun 2013.
[22] PQ32/30,Datasheet, ferroxcube, 2016.
論文全文使用權限:不同意授權