現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:汽油缸內直噴渦輪增壓引擎模擬與驗證 [以論文名稱查詢館藏系統]
論文英文名稱:Simulation and Validation of a Gasoline Direct Injection Turbocharged Engine [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:車輛工程系
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:林為星
英文姓名:Wei-Xing Lin
研究生學號:105448007
學位類別:碩士
語文別:中文
口試日期:2018/07/23
論文頁數:93
指導教授中文名:吳浴沂
指導教授英文名:Yuh-Yih Wu
口試委員中文名:蘇評揮;林士賢;陳柏全;吳浴沂
中文關鍵詞:汽油缸內直噴渦輪增壓引擎引擎模擬Ricardo WAVE
英文關鍵詞:Gasoline Direct Injection Turbocharged EngineEngine SimulationRicardo WAVE
論文中文摘要:本論文針對一具汽油缸內直噴渦輪增壓引擎進行引擎實驗,範圍為1000rpm到5000rpm的全負載條件,量取引擎運轉相關性能、油耗以及環境參數後進行燃燒分析定義出相關燃燒特性參數,再以Ricardo WAVE模擬軟體進行模擬驗證。
Ricardo WAVE模擬軟體提供直覺化的建模介面,設定模擬環境後依序建立進排氣系統、引擎本體及渦輪增壓器架構,再針對渦輪增壓器之效率及質量流率係數、進排氣腔室熱傳係數、缸內熱對流熱傳係數、及渦輪洩壓閥開度進行調整。
最後根據容積效率、平均有效壓力、制動馬力油耗率的模擬結果與實驗比較,皆能模擬出與實驗值近似的結果,而從汽缸壓力疊圖比較更能說明本論文所發展的模擬架構能表現真實引擎運轉的燃燒特性,能有足夠的準確性可以表現真實引擎的性能;且歸納出渦輪增壓器運轉點、50%質量燃燒率、燃燒區間、渦輪洩壓閥開度為對WAVE引擎模擬之性能、油耗影響最直接之關鍵參數。
論文英文摘要:This study describes the simulation and validation of a gasoline direct injection turbocharged engine. Experiments were performed from 1000rpm to 5000 rpm with the wide open throttle, and combustion parameters are derived from experimental measurements of the in-cylinder pressure trace. Engine simulations were performed using the WAVE from Ricardo.
WAVE simulation software provides an intuitive modeling interface. Efficiency and mass flow rate coefficient of the turbocharger, intake and exhaust ports heat transfer coefficient, in-cylinder convective heat transfer coefficient and the wastegate are calibrated to fit the experimental data after setting up the parameters of the simulation environment, intake and exhaust systems, engine body and turbocharger.
Finally, simulation results of volumetric efficiency, mean effective pressure, brake specific fuel consumption, and cylinder pressures are validated with the experiment, which means the engine developed by WAVE is able to simulate the combustion characteristics, performance and fuel consumption of the target engine. Therefore, the turbocharger operating point, 50% mass fraction burned, combustion duration and wastegate opening are critical parameters affecting the performance and fuel consumption of the engine simulation are summarized.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
圖目錄 vii
第一章 前言 1
1.1 研究背景與動機 1
1.2 文獻回顧 5
1.3 研究目的及方法 7
第二章 Ricardo WAVE引擎模擬 8
2.1 Ricardo WAVE模擬軟體介紹 8
2.2 模擬設定參數 8
2.3 引擎各感測器與作動器位置 13
2.4 模擬環境建立 14
2.5 模擬架構建立 18
2.5.1 進排氣架構建立 20
2.5.2 渦輪增壓器模擬架構建立 36
2.5.3 燃燒模型設定 43
2.5.4 摩擦模型設定 44
2.5.5 熱傳模型設定 44
2.5.6 噴油嘴架構建立 46
2.5.7 中間冷卻器架構建立 46
2.6 引擎模擬運算方程式 48
2.6.1 氣體交換模型 48
2.6.2 燃燒模型 49
2.6.3 熱傳模型 50
2.6.4 摩擦損失模型 50
2.7 引擎模擬調整參數 51
第三章 實驗設備與方法 53
3.1 實驗設備 53
3.1.1 目標引擎 53
3.1.2 大氣壓力計 53
3.1.3 引擎動力計 54
3.1.4 燃油流量計 56
3.1.5 空氣流量計 59
3.1.6 AVL燃燒分析儀 60
3.1.7 熱電偶溫度感知器 63
3.2 實驗設備 64
3.3 實驗指標參數 66
3.3.1 容積效率 66
3.3.2 平均有效壓力 66
3.3.3 制動馬力耗油率 67
第四章 引擎模擬結果 68
4.1 容積效率 70
4.2 指示平均有效壓力 72
4.3 制動平均有效壓力 74
4.4 制動馬力耗油率 76
4.5 汽缸壓力 77
第五章 結論與未來展望 81
5.1 結論 81
5.2 未來展望 82
參考文獻 83
符號彙編 89
著作發表 93
論文參考文獻:1. De Cesare, M., Cavina, N., and Paiano, L., "Technology Comparison for Spark Ignition Engines of New Generation," SAE Int. J. Engines 10(5):2017, doi:10.4271/2017-24-0151.
2. Sugiyama M., "The new generation of Toyota Powertrain", 25rd Aachen Colloquium Automobile and Engine Technology 2016.
3. ICCT. (2017). light-duty vehicle greenhouse gas and fuel economy standards. Washington, DC: The International Council on Clean Transportation. Retrieved from https://www.theicct.org/publications/2017-global-update-LDV-GHG-FE-standards
4. Brunner, H., Hirz, M., Fischer, P., "CO2 emissions of different technologies in passenger cars at real user scenarios in the product life cycle", International Vienna Motor Symposium 2016.
5. Kirwan, J., Shost, M., Roth, G., and Zizelman, J., "3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Low CO2 and NOx Emissions," SAE Int. J. Engines 3(1):355-371, 2010, doi:10.4271/2010-01-0590.
6. Boggs, D., Dorobantu, M., German, J., Isenstadt A., Watson, T., "Downsized, boosted gasoline engines", ICCT Working Paper 2016-21.
7. Cavina N., Businaro A., Rojo N., De Cesare M, "Investigation of Water Injection Effects on Combustion Characteristics of a GDI TC Engine," SAE Int. J. Engines 10(4):2209-2218, 2017.
8. S.P. Chincholkara,*, Dr. J. G. Suryawanshib, "Gasoline Direct Injection: An Efficient Technology", 5th International Conference on Advances in Energy Research, ICAER 2015, 15-17 December, Mumbai, India.
9. H. Nohira. Development of Toyota’s direct injection gasoline engine. Proceedings of AVL Engine and Environment Conference, 1997.p.239–49.
10. G. Rottenkolber, J. Gindele, J. Raposo, K. Dullenkopf, W. Hentschel, U. Spicher. Spray analysis of a gasoline direct injector by means of two-phase PIV. Experiments in Fluids 32 (2002) 710–721 Springer-Verlag 2002.
11. R.Rotondi, G.Bella. Gasoline direct injection spray simulation. International, J Thermal Sci45 (2006) 168–179.
12. Qianfan Xin, "Overview of Diesel Engine Applications for Engine System Design - Part 1: Systems Engineering and Rational Considerations of Product R&D Organization Design, " SAE Technical Paper No.2011-01-2181, 2011.
13. National ITS Architecture Team, 2007 "System Engineering for Intelligent Transportation Systems," Publication No. FHWA-HOP-07-069, Washington, DC, pp. 11., Retrieved from https://ops.fhwa.dot.gov/publications/seitsguide/
14. 林煌閔,四缸渦輪汽油引擎模型建立與驗證,碩士論文,國立臺北科技大學車輛工程系所,臺北,2016。
15. P. Gautier, A. Albrecht, P. Moulin, A. Chasse L. Fontvieille, A. Guinois and L. Doléac, "A New Simulation Step Towards Virtual Bench Through the Challenging Case of Two-Stage Turbocharger Diesel Engine Control Design," SAE Technical Paper No.2008-01-0355, 2008.
16. Hubert Friedl, Marko Certic, Alois Fuerhapter, Paul Kapus, Karl Koeck and Matthias Neubauer, "Technology Features and Development Methods for Spark Ignited Powertrain to Meet 2020 CO2 Emission Targets" SAE Paper No. 2013-36-0438, 2013
17. 徐詠富,運用CFD軟體設計汽油缸內直噴式引擎層狀燃燒系統,碩士論文,國立臺北科技大學車輛工程系所,臺北,2016。
18. Ricardo, Shoreham Technical Centre (Head Office), Shoreham-by-Sea, UK, WAVE., Retrieved from https://software.ricardo.com/products/wave
19. Gamma Technologies, LLC., Worldwide Headquarters, Westmont, USA, GT-POWER., Retrieved from https://www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software/
20. Peter A. Golubev, "Application of the WAVE system at the initial stages of engine design," Retrieved from https://software.ricardo.com/products/wave/wave-publications
21. "Optimization of an engines performance using LMS Optimus and Ricardo WAVE" Retrieved from https://software.ricardo.com/products/wave/wave-publications
22. Daimler Chrysler, "Performance optimization of I-4 gasoline engine with variable valve timing using WAVE/iSight" Retrieved from https://software.ricardo.com/products/wave/wave-publications
23. "Smart engine performance optimization combining optimus and Ricardo WAVE" Retrieved from https://software.ricardo.com/resources
24. DUCATI Motor, "Application of WAVE in motorcycle prototyping" Retrieved from https://software.ricardo.com/resources
25. Volker Richter, "Calculation of variable valve timing with the 1D-CFD code WAVE" Retrieved from https://software.ricardo.com/products/wave/wave-publications
26. Hyundai Heavy Industries Co., Ltd., "Improving the NOx-BSFC Trade Off of a Turbocharged Large" Retrieved from https://software.ricardo.com/resources
27. Fawzan Alsharif, "Optimization Analysis of a V-Twin Motorcycle Engine Using WAVE Cycle Analysis and an iSight Optimization Framework" Retrieved from https://software.ricardo.com/products/wave/wave-publications
28. Volvo Car Corporation, "Exhaust System Warm-Up Analysis Using The WAVE Code " Retrieved from https://software.ricardo.com/products/wave/wave-publications
29. BMW, "Simulation and analysis drives success" Retrieved from https://software.ricardo.com/resources
30. Ricardo, "Thermal Efficiency Improvement of Automotive Gasoline Engine" Retrieved from https://software.ricardo.com/products/wave/wave-publications
31. Chien, L., Younkins, M., and Wilcutts, M., "Modeling and Simulation of Airfow Dynamics in a Dynamic Skip Fire Engine," SAE Technical Paper 2015-01-1717, 2015, doi:10.4271/2015-01-1717.
32. Mirzaeian, M., Millo, F., and Rolando, L., "Assessment of the Predictive Capabilities of a Combustion Model for a Modern Downsized Turbocharged SI Engine," SAE Technical Paper 2016-01-0557, 2016, doi:10.4271/2016-01-0557.
33. M. Grill, T. Billinger and M. Bargende., "Quasi-Dimensional Modeling of Spark Ignition Engine Combustion with Variable Valve Train," SAE Technical Paper 2006-01-1107, 2016.
34. Mike Bybee and Santhosh Gundlapally., "Knock Analysis and Prediction: Application to Motorcycle Engines" Honda R&D, Retrieved from https://www.gtisoft.com/gt-suite/publications/
35. Jens Neumeister, Timothy Hattrell., "Development of an Advanced Quasi-Dimensional SI Engine Combustion Model" Retrieved from https://www.gtisoft.com/gt-suite/publications/
36. Vincenzo Bevilacqua, Eric Jacobs and K. Fuoss.,"Fuel Consumption Improvement on Highly Charged Gasoline Engines Through Intake Air Temperature Reduction" Porsche Engineering, Retrieved from https://www.gtisoft.com/gt-suite/publications/
37. Birckett, A., Engineer, N., Arlauskas, P., Shirley, M. et al., "Mechanically Supercharged 2.4L GDI Engine for Improved Fuel Economy and Low Speed Torque Improvement," SAE Technical Paper 2014-01-1186, 2014, doi:10.4271/2014-01-1186.
38. Bozza, F., De Bellis, V., Gimelli, A., and Muccillo, M., "Strategies for Improving Fuel Consumption at Part-Load in a Downsized Turbocharged SI Engine: a Comparative Study," SAE Int. J. Engines 7(1):2014, doi:10.4271/2014-01-1064.
39. Marc Musial and Ken Singh.,"Application of SI Turbulent Combustion Model in a Chrysler Turbocharged Engine" Chrysler/FCA US LLC, Retrieved from https://www.gtisoft.com/gt-suite/publications/
40. Teodosio, L., De Bellis, V., and Bozza, F., "Fuel Economy Improvement and Knock Tendency Reduction of a Downsized Turbocharged Engine at Full Load Operations through a Low-Pressure EGR System," SAE Int. J. Engines 8(4):2015, doi:10.4271/2015-01-1244.
41. Ragnar Burenius.,"Using 1D Simulations to Optimize a Supercharger for a Twin Charged DI Gasoline Engine" Volvo Car Corporation, Retrieved from https://www.gtisoft.com/gt-suite/publications/
42. Yuan, H., Foong, T., Chen, Z., Yang, Y. et al., "Modeling of Trace Knock in a Modern SI Engine Fuelled by Ethanol/Gasoline Blends," SAE Technical Paper 2015-01-1242, 2015, doi:10.4271/2015-01-1242.
43. T. Hattrell, C. G. W. Sheppard and A. A. Burluka., "Burn Rate Implications of Alternative Knock Reduction Strategies for Turbocharged SI Engines" SAE Technical Paper 2006-01-1110.
44. Ricardo Software Advanced Tutorials., "Full and Part Load Model Validation Process for 1.4L GTDI Engine-EA211 - 1.4L 103kW TFSI," Van Buren Township, MI 48111, U.S.A., 2017.
45. Ricardo Software Beginner Tutorials., "Gasoline Engine Model: Defining the Intake and Exhaust Valves, Valve Measurements typically used," Van Buren Township, MI 48111, U.S.A., 2017.
46. Ricardo Software Reference Library., "Discretization," Van Buren Township, MI 48111, U.S.A.,2017.
47. Ricardo Software Conduction and Heat Transfer Sub-Models., "Manifold Conduction Sub-Model," Van Buren Township, MI 48111, U.S.A.,2017.
48. Robert Bosch GmbH (2004). Bosch Automotive Handbook, 6th Edition. Germany: Robert Bosch GmbH.
49. DuPont website (scattered), "Zytel plastic material properties"
50. www.matweb.com, "Cordierite (catalyst monolith) material properties"
51. Ricardo Software Elements Library., "Calculated Y-Junction, Total Flow Length, " Van Buren Township, MI 48111, U.S.A., 2017.
52. Ricardo Software Intermediate Tutorials., "Turbocharging," Van Buren Township, MI 48111, U.S.A., 2017.
53. Ricardo Software Elements Library., "Fixed Compressor," Van Buren Township, MI 48111, U.S.A., 2017.
54. Ricardo Software Elements Library., "Fixed Turbine," Van Buren Township, MI 48111, U.S.A.,2017.
55. Ricardo Reference Library., "Turbocharger Formulas," Van Buren Township, MI 48111, U.S.A.,2017.
56. Ricardo Reference Library., "Compressor Surge," Van Buren Township, MI 48111, U.S.A.,2017.
57. Robert Bosch GmbH (2011). Bosch Automotive Handbook, 8th Edition. Germany: Robert Bosch GmbH, pp.380.
58. Ricardo Software Conduction and Heat Transfer Sub-Models., "Simple Conduction," Van Buren Township, MI 48111, U.S.A.,2017.
59. Ricardo Software Elements Library., "Mass per Hour injectors," Van Buren Township, MI 48111, U.S.A.,2017.
60. Ricardo Software Conduction and Heat Transfer Sub-Models., "Manifold Conduction Sub-Model: Notes," Van Buren Township, MI 48111, U.S.A.,2017.
61. Ricardo Software Combustion and Emissions Sub-Models., "SI Wiebe Combustion," Van Buren Township, MI 48111, U.S.A.,2017.
62. Woschni, G. "Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine", SAE Paper 670931, 1967
63. Woschni, G. "Die Berechnung der Wandverluste und der thermischen Belastung der Bauteile von Dieselmotoren" (“Calculation of Heat Loss to Walls and Thermal Loading of Diesel Engine Components”) MTZ31 (1970): 491-499
64. Chen, S. K. and P. F. Flynn. "Development of Single Cylinder Compression Ignition Research Engine", SAE Paper 650733, 1965
65. Ricardo Software Intermediate Tutorials., " Model Calibration - Automating the Curve Fits with HEEDS," Van Buren Township, MI 48111, U.S.A.,2017.
論文全文使用權限:同意授權於2021-08-27起公開