You are here:Home > Theses > Detail
Title:單頻摻鈥光纖雷射放大器之相關研究 [以論文名稱查詢館藏系統]
Translated Title:Study of single-frequency Ho3+ doped fiber laser amplifier [以論文名稱查詢館藏系統]
Publish Year:106
Translated Creator:Hao-Wen Hsiao
Student ID:104658001
Defense Date:2017/07/19
Translated Advisor:Yin-Wen Lee
Trandlated Keyword:Ho3+ doped fiberfiber laserfiber laser amplifier
Abstract:光纖雷射可應用於醫療手術、材料加工、大氣感測等各種不同領域,近年來光纖雷射波長往長波長的方向發展,2 µm的波段對有人眼安全的特點。目前摻銩(Tm3+)光纖雷射常用於2µm,但銩離子最長可以釋放出2.05 µm的波段,而為了產生更長的雷射波段,我們研究高濃度摻鈥矽酸鹽光纖。實驗中,應用2.06 µm Tm:Ho:YLF固態雷射系統,做出摻鈥光纖雷射放大器。我們以清華大學施宙聰教授實驗室研發出單頻波長可調的2.06 µm Tm:Ho:YLF固態雷射系統當作種子光源,再加上本實驗室對摻鈥光纖雷射高功率之幫浦光源的相關研究基礎,將Tm:Ho:YLF固態雷射系統和光纖雷射系統做結合,並後續做出摻鈥光纖幫浦雷射放大器,並研究高濃度摻鈥矽酸鹽光纖之單位長度增益。
Translated Abstract:Fiber laser can be used in medical surgery, materials processing and gas sensing. Recently, more and more fiber laser research are focused on the long wavelength NIR fiber laser sources. The 2µm fiber laser owns the eye-safe feature. The thulium fiber laser has been actively studied for 2µm emission, but the longest wavelength of the thulium ion can only be 2.05 µm. To extent the laser operation wavelength, in this thesis, we investigate the gain property of heavily Ho3+ doped silica fibers, based on a Ho3+ doped fiber MOPA. The seed source is a wavelength-tunable single-frequency 2058nm Tm:Ho:YLF solid state laser, built by Prof. J.T. Shy and P.L. Luo at NTUT. Combined with our own pump source, a Tm3+ doped fiber MOPA, we successfully measure the gain per unit length of the heavily Ho3+ doped silica fiber.
Table of Content:摘 要 i
誌 謝 iii
目錄 iv
圖目錄 vi
表目錄 vi
第一章 緒論與研究動機 1
1.1 研究動機 1
1.2 論文內容及章節分佈介紹 2
第二章 摻鈥光纖雷射放大器之廣論 4
2.1 光纖雷射機制 4
2.1.1 光纖雷射之幫浦光源 6
2.1.2 光纖雷射增益介質 9
2.1.3 光纖雷射共振腔 10
2.2 摻鈥光纖之廣論 11
2.3 摻鈥光纖雷射放大器 14
2.4 摻鈥光纖雷射放大器之種子光源 16
2.5 摻鈥光纖雷射放大器之幫浦光源 19
第三章 摻鈥光纖雷射放大器之模擬 20
3.1 摻鈥光纖雷射放大器種子光源之模擬 20
3.2 摻鈥光纖雷射放大器之相關幫浦光源之模擬 23
3.3 摻鈥光纖雷射放大器之模擬 28
第四章 摻鈥光纖雷射放大器之實驗 34
4.1 摻鈥光纖雷射放大器之種子光源 34
4.2 摻鈥光纖雷射放大器之幫浦光源 38
4.2.1 摻鉺光纖雷射放大器 39
4.2.2 摻銩光纖雷射放大器 41
4.3 摻鈥光纖雷射放大器 45
第五章 結論與未來展望 52
參考文獻 55
Reference:[1] P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev, Vol. 31, Issue 4, pp. 201-210, 2002.
[2] Thomas M. Taczak and Dennis K. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Applied Optics, Vol. 37, Issue 36, 1998.
[3] Grady J. Koch, Mulugeta Petros, Jirong Yu, and Upendra N. Singh, “Precise wavelength control of a single-frequency pulsed Ho:Tm:YLF laser,” Applied Optics , Vol. 41,Issue 9, pp. 1718-1721, 2002.
[4] G.J. Koch, J.Y. Beyon, F. Gibert, B.W. Barnes, S. Ismail, M. Petros, P.J. Petzar, J. Yu, E.A. Modlin, K.J. Davis, and U.N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2 : design and application to atmospheric measurements,” Applied Optics , Vol. 47, Issue 7, pp. 944-956, 2008.
[5] M.E. Webber, Jian Wang, S.T. Sanders, D.S. Baer, R.K. Hanson, “In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors,” Applied Optics , Vol. 28, Issue 1, pp. 407-413, 2000.
[6] Michalis N. Zervas and Christophe A. Codemard, “High Power Fiber Lasers: A Review,” IEEE Quantum Electronics, Vol. 20, Issue 5, 2014.
[7] Y. W. Lee, “Power scaling of Yb3+-doped phosphate fiber lasers and amplifiers,” Ph.D. Thesis, Stanford University, California, U. S. A., Vol. 70, Issue 1, pp. 110-317, 2009.
[8] A Hemming, N Simakov, J Haub, A Carter, “A review of recent progress in holmium-doped silica fibre sources,” IEEE Quantum Electronics , Vol. 20, Issue 6, pp. 621-630, 2014.
[9] N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding - pumped, tunable holmium doped fiber laser,” Optics Express , Vol. 21,Issue 23, pp. 28415-28422, 2013.
[10] N. Simakov, Zhihong Li, Shaif-Ul Alam, P.C. Shardlow, J. M. O. daniel, D. Jain, J. K. Sahu, A. Hemming, A. Clarkson, and D. J. Richardson, “Holmium-Doped Fiber Amplifier for Optical Communications at 2.05 – 2.13 μm,” Optical Fiber Communication, 2015.
[11] J. Geng, Q. Wang,T. Luo, B. Case, S. Jiang, F. Amzajerdian, and J. Yu, “Single - frequency gain - switched Ho-doped fiber laser,” Optics Letters, Vol 37, Issue 18, 2012.
[12] P.L. Luo, C.C. Kuo, C.C. Lee, J.T. Shy, “Frequency stabilization of a single - frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06 μm,” Appl. Phys. B, 2012.
[13] JLT, Stuart D. Jackson and Terence A. King, “Theoretical Modeling of Tm-Doped Silica Fiber Lasers,” J. Lightwave Technol., Vol. 17, Issue 5, pp. 948-956, 1999.
[14] 蔡柏賢,高功率摻鈥光纖雷射之幫浦光源的相關研究,碩士論文,國立台北科技大學,台北,2016年
[15] reZonator Available online:
[16] Ida Häggström, Björn Jacobsson, and Fredrik Laurell, “Monolithic Bragg-locked Nd:GdVO4 laser,” Optics Express., Vol. 15, Issue 18, pp. 948-956, 2007.
[17] LiekkiTM Application Designer v4.0. Available online:
[18] 張浚欣,高效率之奈米化摻鉺光纖之釔鋯鋁光纖雷射,碩士論文,國立台北科技大學,台北,2015年
[19] N. Simakov, Zhihong Li, Shaif-Ul Alam, P.C. Shardlow, J. M. O. daniel, D. Jain, J. K. Sahu, A. Hemming, A. Clarkson, and D. J. Richardson, “Holmium-Doped Fiber Amplifier for Optical Communications at 2.05 – 2.13 μm,” Optical Fiber Communication, 2015.
[20] Bruneau D, Delmonte S, Pelon J., “Modeling of Tm, Ho:YAG and Tm, Ho:YLF 2- mum Lasers and Calculation of Extractable Energies,” Applied Optics, Vol. 37, Issue 36, pp. 8406-8419, 1998.
[21] Thorlabs,
[22] N. Simakov, A. V. Hemming, A. Carter, K. Farley, A. Davidson, N. Carmody, M. Hughes, J. M. O. Daniel, L. Corena, D. Stepanov, and J. Haub, “Design and experimental demonstration of alarge pedestal thulium-doped fibre,” Opt. Express, Vol. 23, pp. 3126-3133, 2015.
Paper Authorization:Disagree