現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:四缸渦輪汽油引擎模型建立與驗證 [以論文名稱查詢館藏系統]
論文英文名稱:Development and Verification of Four Cylinder Turbocharged Gasoline Engine Model [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:車輛工程系所
畢業學年度:104
畢業學期:第二學期
中文姓名:林煌閔
英文姓名:LIN, HUANG-MIN
研究生學號:103448008
學位類別:碩士
語文別:中文
口試日期:20160719
指導教授中文名:吳浴沂
口試委員中文名:陳正夫;陳柏全;吳浴沂
中文關鍵詞:渦輪汽油引擎渦輪增壓器模型Ricardo WAVE
英文關鍵詞:Turbocharged gasoline engineTurbocharger modelRicardo WAVE
論文中文摘要:本論文針對一具四缸渦輪汽油引擎進行引擎實驗,範圍由1200rpm到4000rpm的全負載條件,量取引擎運轉相關性能、油耗以及環境參數後進行燃燒分析定義出相關燃燒特性參數,再以兩套模擬軟體進行模擬驗證。
Ricardo WAVE模擬軟體提供直覺化的建模介面,設定模擬環境後依據引擎幾何架構和引擎運轉參數建立模擬系統,Simulink模型則是根據引擎運轉時的各種動態,利用相關建模方程式以模組化方式建立本論文之模型。
渦輪增壓器的動態模型是根據渦輪增壓器之平台量測數據擬合相關經驗公式,渦輪增壓器模型驗證後並將進排氣架構類比成實際引擎的渦輪增壓系統,再根據實驗運轉條件以及引擎運轉參數進行模型驗證,從結果看來渦輪增壓器的渦輪機和壓縮機建模,能達到與平台量測數據相吻合的結果。
根據進氣歧管壓力、進氣質量流率、性能和油耗的模擬結果比較,發現利用Ricardo WAVE模擬系統和本論文所發展的Simulink模型都能模擬出與實驗值相近似的結果,而從汽缸壓力圖比較更能說明本論文所發展的兩套模擬系統皆能模擬真實引擎運轉的燃燒特性,具有足夠的準確性可以表現真實引擎的性能。
論文英文摘要:An engine experiment of a four cylinder turbocharged engine is taken ranging from 1200rpm to 4000rpm under full load condition. After the experiment, engine performance, fuel consumption and the environment data are calculated using combustion analysis to extract the related combustion parameters, and two simulation programs are developed for verification then.
Ricardo WAVE software provides an instinct development interface, and engine geometric parameters and experiment data are inputted to the simulation program after setting simulation environment. On the other hand, Simulink model is constructed using modulation methods with several equations related to engine operating dynamics.
The proposed turbocharger dynamic model is developed into empirical equation based on the measured data from test rig. And the verified turbocharger model is therefore combined with gas exchange structure to achieve the real turbocharged system, and then the proposed turbocharged engine model is executed model verification with experiment conditions and operation parameters. The developed compressor and turbine of the target turbocharger meet the approximate results with test bench measurements.
The comparisons between simulation and experiment data like intake manifold pressure, mass air flow rate, performance and fuel consumption get close results for both Ricardo WAVE and Simulink models. More than that, when comparing to the measured cylinder pressure, the same combustion characteristics can be realized no matter using the proposed Ricardo WAVE simulation program or Simulink model, which means the proposed models are able to describe the characteristics of the real engine.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 前言 1
1.1 研究背景與動機 1
1.2 文獻回顧 4
1.2.1 燃燒模型 4
1.2.2 渦輪增壓器 6
1.3 研究目的及方法 9
第二章 實驗設備與方法 11
2.1 實驗設備 11
2.1.1 目標引擎 11
2.1.2 大氣壓力計 11
2.1.3 引擎動力計 12
2.1.4 燃油流量計 14
2.1.5空氣流量計 17
2.1.6廢氣分析儀 18
2.1.7 AVL燃燒分析儀 19
2.1.8 熱電偶溫度感知器 22
2.2 實驗步驟 23
2.3 實驗指標參數 25
2.3.1 容積效率 25
2.3.2 平均有效壓力 25
2.3.3 制動馬力耗油率 26
第三章 Ricardo WAVE引擎模擬 27
3.1 Ricardo WAVE模擬軟體介紹 27
3.2 Ricardo WAVE模擬環境設定 27
3.3 引擎模擬架構設定 28
3.3.1 進排氣幾何架構 29
3.3.2 引擎本體幾何架構 32
3.3.3 渦輪增壓器模型 33
3.3.4 其他系統部件 37
3.4 引擎模擬運算方程式 39
3.4.1 氣體交換模型 39
3.4.2 燃燒模型 40
3.4.3 熱傳模型 41
3.4.4 摩擦損失模型 41
3.5 引擎模擬條件設定 42
3.6 模擬數據分析 42
第四章 Matlab/Simulink引擎模型建立 43
4.1 Matlab/Simulink軟體介紹 43
4.2 Simulink模擬環境設定 43
4.3進排氣動態 43
4.4 渦輪增壓器模型 47
4.4.1 壓縮機模型 49
4.4.2 渦輪機模型 58
4.4.3 渦輪連接軸動態 66
4.4.4 排氣洩壓閥 66
4.4.5 進氣洩壓閥 67
4.5 燃油動態 68
4.6 燃燒動態 68
4.7摩擦動態 71
4.8曲軸旋轉動態 73
4.9引擎虛擬控制器 73
第五章 引擎模擬結果 76
5.1 容積效率 76
5.3 平均有效壓力 78
5.4 制動馬力耗油率 81
5.5 汽缸壓力 82
第六章 結論與未來展望 86
6.1 結論 86
6.2 未來展望 88
參考文獻 89
符號彙編 94
著作發表 99
論文參考文獻:1. https://stock-ai.com/mT-20.php,投資級經濟指標使用指南。
2. http://news.ltn.com.tw/news/world/paper/982157,Liberty Times Net。
3. R. Flierl, and M. Fluting, “A Gasoline Engine Concept for Improved Fuel Economy –The Lean Boost System,” SAE Technical Paper No.2000-01-1227, 2000.
4. S. Adachi, K. Horio, Y. Nakamura, K. Nakano and A. Tanke, “ Development of Toyota 1ZZ-FE Engine,” SAE Technical Paper No.981087, 1998.
5. M. Howlett, B. Enzi, G. Falck, W. Schoeffmann, R. Haslinger and M. Brunner, “CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis,” SAE Technical Paper No.2013-01-1740, 2013.
6. Qianfan Xin, “Overview of Diesel Engine Applications for Engine System Design - Part 1: Systems Engineering and Rational Considerations of Product R&D Organization Design,” SAE Technical Paper No.2011-01-2181, 2011.
7. P. Gautier, A. Albrecht, P. Moulin, A. Chasse L. Fontvieille, A. Guinois and L. Doléac, “A New Simulation Step Towards Virtual Bench Through the Challenging Case of Two-Stage Turbocharger Diesel Engine Control Design,” SAE Technical Paper No.2008-01-0355, 2008.
8. J.A. Gatowski, E.N. Balles, K.M. Chun, F.E. Nelson, J.A. Ekchian, and J.B. Heywood, “Heat Release Analysis of Engine Pressure Data,” SAE Technical Paper No.841359, 1984.
9. R.A. Svehla and B.J. McBride, “Fortran IV Computer Programs for Calculation of Thermodynamic and Transport Properties of Complex Chemical Systems,” Technical Report NASA Technical Note TND-7056, NASA Lewis Research Center, 1973.
10. K. M. Chun and J. B. Heywood, “Estimating Heat-Release and Mass-of-Mixture Burned from Spark-Ignition Engine Pressure Data,” Combustion Sci. and Tech., Vol. 54, 1987, p.p.133–143.
11. R.B. Krieger and G.L. Borman, “The Computation of Apparent Heat Release for Internal Combustion Engines,” ASME 66-WA/DGP-4, 1966.
12. R. Stone, Introduction to Internal Combustion Engines, SAE International, 3rd edition, 1999.
13. G. Woschni, “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine,” SAE Technical Paper No.670931, 1967.
14. G.F. Hohenberg, “Advanced Approaches for Heat Transfer Calculations,” SAE Technical Paper No.790825, 1979.
15. N. Watson and M.S. Janota, Turbocharging the Internal Combustion Engine, The Macmillan Press Ltd, 1982. ISBN 0-333-24290-4.
16. T.K. Hayes, R.A. White, and J.E. Peters, “Combustion Chamber Temperature and Instantaneous Local Heat Flux Measurements in a spark Ignition Engine,” SAE Technical Paper No.930217, 1993.
17. A. Wimmer, R. Pivec, and T. Sams, “Heat Transfer to the Combustion Chamber and Port Walls of IC Engines – Measurement and Prediction,” SAE Technical Paper No.2000-01-0568, 2000.
18. J. B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill Book Company, 1988.
19. R. Harish Kumar and A. J. Antony, “Progressive Combustion in SI-Engines-Improved Empirical Models for Simulating and Optimizing Engine Performance,” SAE Technical Paper No.2008-01-1630, 2008.
20. M Mittal, G Zhu, and H Schock, “Fast mass-fraction-burned calculation using the net pressure method for real-time applications,” Proc. IMechE Vol. 223 Part D: J. Automobile Engineering, IMechE 2009, p.p. 389-394.
21. J I Ghojel, “Review of the development and applications of the Wiebe function: a tribute to the contribution of Ivan Wiebe to engine research,” Int. J. Engine Res. Vol. 11, 2010, p.p. 297-312.
22. F. Payri, J. Benajes and M. Reyes, “Modeling of Supercharger Turbines in Internal Combustion Engines,” Int. J. Mech. Sci. Vol. 38, Nos 8-9, I996, pp. 853-869.
23. Gimmler, H., Holzt, H.-P., Weimann and H.-J, “Computer Simulation of the Acceleration Characteristics of an Exhaust Gas Turbocharged Automotive Diesel Engine,” Turbocharging and Turbochargers, Proceedings of the Institution of Mechanical Engineers, No. C34/82, IMechE, 1982.
24. Fillipi, Z., Assanis, D.N., “Quasi-Dimensional Computer Simulation of the Turbocharged Spark-Ignition Engine and its use for 2- and 4-Valve Engine Matching Studies,” SAE Technical Paper No.910075, 1991.
25. Kouremenos D.A., Hountalas D.T. and Kotsiopoulos P.N., “Computer Simulation of Turbocharged Diesel Engines and its Application for Engine and Turbocharger Diagnosis,” Turbocharging and Turbochargers, Proceedings of the Institution of Mechanical Engineers, No.C484/008/94, IMechE, 1994.
26. Benvenuto, G., Campora, U, “A Computer Model for the Dynamic Simulation of Turbocharged Diesel Engines,” Proceedings of the 1st International Conference on Control and Diagnostics in Automotive Applications, No.96A4014, 1996.
27. Watson, N., “Turbocharged Spark Ignition Engine Simulation,” FISITA Congress No. 845042, 1984.
28. Hong, C. W., and Watson, N, “Turbocharged S.I. Engine Simulation under Steady and Transient Conditions,” SAE Technical Paper No.880122, 1988.
29. Kao, M., Moskwa, J. J., “Turbocharged Diesel Engine Modelling for Nonlinear Engine Control and State Estimation,” Transactions of the ASME, Vol. 117, March 1995.
30. Mueller, M., “Mean Value Modeling of Turbocharged Spark Ignition Engines,” Master’s thesis, DTU, Denmark, 1997.
31. Jensen J.P, Kristensen A.F., Sorenson S.C., Houbak N. and Hendricks E., “Mean value modeling of a small turbocharged diesel engine,” SAE Technical Paper No.910070, 1991.
32. Jamil El Hadef, Guillaume Colin, Yann Chamaillard and Vincent Talon, “Turbocharged SI Engine Models for Control,” Advanced Vehicle Control, 2002.
33. Paul Moraal and Ilya Kolmanovsky, “Turbocharger Modeling for Automotive Control Applications,” SAE Technical Paper No.1999-01-0908, 1999.
34. Nelson, S.A., Filipi, Z.S. and Assanis, D.N., “The Use of Neural Networks for Matching Compressors with Diesel Engines,” Spring Technical Conference, Vol. ICE-26-3, 1996, p.p. 35- 42.
35. Kang Rong, “Modeling of Turbocharged Spark Ignited Engine and Model Predictive Control of Hybrid Turbocharger,” Master`s thesis, University of Florida, USA, 2014.
36. Jamil El Hadef, Guillaume Colin, Yann Chamaillard and Vincent Talon, “Physical-Based Algorithms for Interpolation and Extrapolation of Turbocharger Data Maps,” SAE Technical Paper No.2012-01-0434, 2012.
37. Idelchik and I. E., Handbook of Hydraulic Resistance, 3rd Edition, 1996
38. www.ricardo.com, Basic WAVE Turbocharger Training.
39. Raithby, G. D. and K. G. T. Hollands, “A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems,” Advances in Heat Transfer, Vol. 11, 1975, p.p.265-315.
40. Chen, S. K. and P. F. Flynn, “Development of Single Cylinder Compression Ignition Research Engine,” SAE Technical Paper No. 650733, 1965.
41. J.J. Moskwa and J.K. Hedrick, “Modeling and Validation of Automotive Engines for Control Algorithm Development,” J. Dyn. Sys., Meas., Control, Vol. 114, No. 2, 1992, pp. 278-285.
42. Y. Y. Wu, Y. Shiao, and B. C. Chen, "Motorcycle Engine Modeling for Real Time Control," The 6th International Symposium on Advanced Vehicle Control, Hiroshima, Japan, 2002.
43. https://turbo.honeywell.com/turbo-basics/turbo-fundamentals/, Honeywell Turbo Fundamentals.
44. Fernando A. R. Filho, Ramon Molina Valle, Sérgio M. Hanriot and José Eduardo Mautone Barros, “Automotive Turbocharger Maps Building using a Flux Test Stand,” SAE Technical Paper No.2002-01-3542, 2002.
45. Y. Y. Wu, B. C. Chen, and F. C. Hsieh, “Modulization of Four-Stroke Single-Cylinder Spark-Ignition Air-Cooled Engine Models,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 221, No. 8, 2007, pp. 1015-1026.
46. J. H. Grau, J. M. García, J. P. García, A. V. Robles, and R. R. Pastor, "Modelling Methodology of a Spark-Ignition Engine and Experimental Validation Part I: Single-Zone Combustion Model," SAE Paper No. 2002-01-2193, 2002.
47. Y. Y. Wu, B. C. Chen, and F. C. Hsieh, "Heat Transfer Model for Small-Scale Air-Cooled Spark Ignition Four-Stroke Engines," International Journal of Heat and Mass Transfer, Vol. 49, No.21-22, 2006, pp.3895-3905.
48. A. Mohammadi, M. Yaghoubi and M. Rashidi, “Analysis of Local Convective Heat Transfer in a Spark Ignition Engine,” International Communications in Heat and Mass Transfer, Vol. 35, 2008, pp. 215-224.
49. A. Mohammadi and M. Yaghoubi, “Estimation of Instantaneous Local Heat Transfer Coefficient in Spark-Ignition Engines,” International Journal of Thermal Sciences, Vol. 49, 2010, pp. 1309-1317.
50. D. A. Kouremenos C. D. Rakopoulos D. T. Hountalas and T. K. Zannis, “Development of a Detailed Friction Model to Predict Mechanical Losses at Elevated Maximum Combustion Pressures,” SAE Paper No. 2001-01-0333, 2001.
51. E. Brusa, C. Delprete and G. Genta, “Torsional Vibration of Crankshafts: Effects of Non-Constant Moments of Inertia,” J. Sound Vibr., Vol. 205, No.2, 1997, pp. 135-150.
52. S. Drakunov, G. Rizzoni, and Y. Y. Wang, "On-Line Estimation of Indicated Torque in IC Engines Using Nonlinear Observers," SAE Paper No.950840, 1995.
論文全文使用權限:同意授權於2016-08-23起公開

延伸閱讀