現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:運用CFD軟體設計汽油缸內直噴式引擎層狀燃燒系統 [以論文名稱查詢館藏系統]
論文英文名稱:Designing Stratified Combustion System for Gasoline Direct Injection Engine by Using CFD Software [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:車輛工程系所
畢業學年度:104
畢業學期:第二學期
中文姓名:徐詠富
英文姓名:Yong Fu Syu
研究生學號:103448005
學位類別:碩士
語文別:中文
口試日期:2016/07/19
指導教授中文名:吳浴沂
指導教授英文名:Yuh-Yih Wu
口試委員中文名:陳柏全;呂百修
中文關鍵詞:直噴式汽油引擎、層狀進氣、噴油正時、可變汽門正時系統、渦輪增壓
英文關鍵詞:Gasoline direct injection engine, Stratified charge, Injection Timing, Variable valve timing system, Turbocharger
論文中文摘要:汽油缸內直噴(Gasoline Direct Injection, GDI)式引擎為未來引擎發展趨勢,其層狀燃燒為節能之關鍵技術,然而層狀燃燒需引擎之各元件搭配才能達成,因此本研究利用計算流體力學軟體設計GDI引擎層狀燃燒系統,並且由於本研究團隊並AC動力計,故建立WAVE GDI引擎模擬系統作為CFD模型之初始條件。
首先針對目標氣道模型利用ANSYS內建之幾何模組進行修改,接著建立數值網格,然後選定數值模型及設定初始條件後,本研究設計不同的噴油正時、增壓壓力以及進氣門開啟時間進行層狀燃燒模擬,最後探討缸內流場之變化,而WAVE引擎模擬系統主要為參照CFD模型建立模擬架構,接著參照實驗數據設定初始條件,最後選用馬達帶動(Motored)方式進行冷流場模擬。
比對引擎冷啟動之缸壓數據、CFD模型以及WAVE模擬之缸內壓力發現,所建立之模型有相當的準確性,而氣流場之模擬時可發現目標引擎主要為依靠氣道外型使氣流產生Tumble運動,然後於不同噴油正時模擬中,可發現於進氣行程噴油主要為提供缸內均質之混合氣,於壓縮行程上死點前噴油則為提供部分區域偏濃之混合氣(Local rich mixture),最後從改變進氣壓力與進氣門正時模擬中,能發現壓縮上死點前之氣流旋轉中心極為重要,並且此氣流旋轉中心若能搭配合適的噴油正時,能讓火星塞附近有較濃的混合氣聚集。
論文英文摘要:Gasoline direct injection(GDI) engine is future development trend, and the key energy-saving technology is stratified combustion. Every component in engine should be assorted so that the stratified combustion can achieve. Therefore, this research designs stratified combustion system for gasoline direct injection engine by CFD software. Besides, due to lack of AC dynamometer, the WAVE GDI simulation system is established for setting the initial condition in CFD model
The geometry module built-in ANASYS software is first applied for modifying target port model, and then generating mesh. After selecting numerical model and set the initial condition, different injection timing, boost pressure, intake valve opening (IVO) conditions are simulated for stratified combustion design and finally discussing the effect on in-cylinder flow. Additionally, WAVE simulation structure is referred to CFD model, and set the initial condition with experimental data. The motored method is employed for cold flow simulation in the end.
Comparing in-cylinder pressure result of crank experimental data, CFD model, and WAVE simulation system, the established model has considerable accuracy. The result of flow field shows that target engine is mainly relied on tumble motion with port geometry. It can be found from different injection timing result that setting injection timing in intake stroke is for supplying homogenous mixture, and the local rich mixture can be produced with injecting before top dead center in compression stroke (bTDC). Finally, in different boost pressure and IVO timing simulation condition, the flow rotational center of flow field is significant in compression stroke before top dead center (bTDC). If the injection timing is coordinated, the rich mixture will be gathered in position of spark plug center.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 研究目的及方法 9
第二章 GDI引擎專利分析 10
2.1專利分類方式 10
2.2 GDI引擎專利分析 11
2.2.1 Spray-guide燃燒室設計相關專利 11
2.2.2 Wall-Guide燃燒室設計相關專利 12
2.2.3 Air-Guide燃燒室設計相關專利 13
2.2.4 GDI引擎設計方式相關專利 15
2.2.5 GDI引擎相關元件設計專利 16
第三章 CFD數值模型建立 18
3.1幾何模型建立 18
3.2 網格劃分 20
3.3 數值模型 22
3.3.1能量模型 22
3.3.2紊流模型 24
3.3.3 Discrete Phase Model 24
3.3.4 演算法選定 30
3.4 CFD模擬方法 31
第四章 WAVE引擎模擬系統建立 36
4.1 WAVE模擬軟體介紹 36
4.1.1 Ricardo WAVE模擬環境設定 36
4.1.2進排氣幾何架構 37
4.1.3 引擎本體幾何架構 40
4.2 引擎模擬運算方程式 41
4.2.1 氣體交換模型 41
4.2.2 熱傳模型 42
4.3 WAVE模擬方法 42
第五章 模擬結果與討論 44
5.1數值模型驗證 44
5.2 改變噴油正時之模擬 46
5.3 改變進氣壓力之模擬 50
5.4 改變汽門正時模擬 53
第六章 結論與未來展望 58
6.1 結論 58
6.2 未來展望 58
參考文獻 60
符號彙編 66
著作發表 70
論文參考文獻:1. http://www.cna.com.tw/news/firstnews/201512130008-1.aspx 巴黎會議報導
2. http://www.moeaboe.gov.tw/oil102/ 我國燃料燃燒二氧化碳排放統計,經濟部能源局,104年12月
3. http://www.motc.gov.tw/ch/index.jsp我國車輛統計數量,中華民國交通部,104年12月
4. Toshizaemom Noce, Felipe Paoli, Amanda Martins, Sergio de Morais Hanriot, Cristiana Brasil Maia and Ricardo Sodré, “Weighted Average Solar Radiation in Brazil for CO2 Off-Cycle Credits using a Battery Charging Solar Roof” SAE Paper No. 2015-36-0199, 2015
5. Michael Martin, Arno Eichberger and Eranda Dragoti-Cela, “Optimization Approach to Handle Global CO2 Fleet Emission Standards” SAE Paper No. 2016-01-0904, 2016
6. Timothy Johnson, “Review of CO2 Emissions and Technologies in the Road Transportation Sector”, SAE Paper No.2010-01-1276, 2010
7. Henning Kleeberg, Dean Tomazic, Jürgen Dohmen, Karsten Wittek and Andreas Balazs, “Increasing Efficiency in Gasoline Powertrains with a Two-Stage Variable Compression Ratio (VCR) System” SAE Paper No.2013-01-0288, 2013
8. Hubert Friedl, Marko Certic, Alois Fuerhapter, Paul Kapus, Karl Koeck and Matthias Neubauer, “Technology Features and Development Methods for Spark Ignited Powertrain to Meet 2020 CO2 Emission Targets” SAE Paper No. 2013-36-0438, 2013
9. Celik, M. B. and Ozdalyan, B. “Gasoline Direct Injection,” In: SIANO, D. (ed.) Fuel Injection, InTech, 2010.
10. Kazunari Kuwahara, Katsunori Ueda and Hiromitsu Ando, “Mixing Control Strategy for Engine Performance Improvement in a Gasoline Direct Injection Engine”, SAE Paper No.980158, 1998
11. Koichi Amari, Shosaku Ando, Keisuke Chujo, Taro Sakai and Hidenori Miyake, “Development of a New 5.6 L V8 Gasoline Engine”, SAE Paper No.2010-01-1320, 2010
12. Oliver Schögl, Hermann Edtmayer, Stephan Schmidt, Stefan Leiber and Thomas Schabetsberger, “Design of a Tumble-Orientated Intake Port Layout for a Gasoline Combustion Process Used in Power Sport Application” SAE Paper No.2011-32-0589, 2011
13. Xu, Z., Yi, J., Curtis, E., and Wooldridge, S., “Applications of CFD Modeling in GDI Engine Piston Optimization,” SAE Paper 2009-01-1936, 2009.
14. M. Costa, U. Sorge, L. Allocca, “CFD optimization for GDI spray model tuning and enhancement of engine performance,” Advances in Engineering Software, Volume 49, Pages 43–53, 2012
15. M. Costa, L. Marchitto, S.S. Merola, U. Sorge, “Study of mixture formation and early flame development in a research GDI (gasoline direct injection) engine through numerical simulation and UV-digital imaging,” Energy, Volume 77, Pages 88-96, 2014
16. Mohammad Taghi Shervani-Tabar, Meysam Sheykhvazayefi, Morteza Ghorbani, “Numerical study on the effect of the injection pressure on spray penetration length,” Applied Mathematical Modelling, Volume 37,Pages 7778–7788, 2013
17. Tomohiro Shinagawa, Masahito Kudo, Wataru Matsubara and Takashi Kawai, “The New Toyota 1.2-Liter ESTEC Turbocharged Direct Injection Gasoline Engine” SAE Paper No. 2015-01-1268, 2015
18. 曾文業、吳明勳、李訓谷、林大惠,「活塞幾何表面對於汽油缸內直噴引擎燃氣混合效能之影響」,中華民國第20屆燃燒與能源學術研討會,台南,2010
19. 曾文業,均質充量壓燃引擎之燃燒室內反應流場模擬,碩士論文,國立成功大學機械工程學系碩博士班,2011
20. Zhao, F., Lai, M.-C., Harrington, D.L., “Automotive spark-ignited direct-injection gasoline engines,” Progress in Energy and Combustion Science, Volume 25, Pages 437–562, 1999.
21. Ritchie Lewis Daniel, “Combustion and Emission Performance of Oxygenated Fuels in a Modern Spark Ignition Engine” Thesis, University of Birmingham, England, 2012
22. Yang, J. and Anderson, R.W., “Fuel Injection Strategies to Increase Full-Load Torque Output of a Direct-Injection SI Engine,” SAE Paper No. 980495, 1998
23. G. K. Fraidl, W. F. Piock and M. Wirth, “Gasoline Direct Injection: Actual Trends and Future Strategies for Injection and Combustion System,” SAE Paper No. 960465, 1996
24. Ren W.M., Shen J., Nally J.F. “Geometrical effects on flow characteristics of a gasoline high pressure swirl injector,” SAE Paper, No. 971641, 1997.
25. 簡豪毅,缸內直噴噴嘴之自主開發及其噴霧特性分析,碩士論文,國立成功大學航空太空工程學系碩博士班,2013
26. 蔡欣倫、吳志勇、蔡文昌、陳志源,「缸內直噴引擎噴霧分析」,中華民國第20屆燃燒與能源學術研討會,雲林,2010
27. 陳正暐、謝逸霖、陳坤禾、郭慶彰、吳志勇,「使用痕劑雷射誘發螢光與數位粒子影像測速研究缸內直噴噴霧與火山口型活塞之交互作用」,中華民國第21屆燃燒與能源學術研討會,雲林,2011
28. Heechang Oh, “Effect of the Multiple Injection on Stratified Combustion Characteristics in a Spray-Guided DISI Engine,” SAE Paper, No. 2011-24-0059, 2011.
29. 吳弘韜,改裝GDI汽油引擎於稀薄當量比暨二階段噴射下引擎性能探討,碩士論文,國立雲林科技大學機械工程系,2014
30. 陳明鏵,改裝GDI汽油引擎於二階段噴射不同噴油條件下之性能之探討,碩士論文,國立雲林科技大學機械工程系,2013,
31. 郭哲成,GDI汽油引擎在二階段不同噴油比例及正時下引擎性能之探討,碩士論文,國立雲林科技大學機械工程系,2012
32. 唐大為,大缸徑單缸汽油引擎改裝缸內直噴系統下引擎性能排污之探討,碩士論文,國立雲林科技大學機械工程系,2011
33. 林建廷,使用PIV技術於類GDI活塞Spray-Guided噴霧撞擊下油滴霧化及運動模式之探討,碩士論文,國立雲林科技大學機械工程系,2014
34. 吳宗樺,高壓噴油嘴驅動器設計與應用田口法於噴油嘴最佳化參數調整測試,碩士論文,高苑科技大學電機工程研究所,2011
35. Guy Hoffmann, Bizhan Befrui, Axel Berndorfer, Walter F. Piock, and Daniel L. Varble, “Fuel System Pressure Increase for Enhanced Performance of GDi Multi-Hole Injection Systems,” SAE Paper, No. 2014-01-1209, 2014.
36. Atul Gupta, Jonathan Saul and Ramzy G. Abdel-Gayed “Downsizing of a Naturally Aspirated Engine to Turbocharged Gasoline Direct Injection Variable Valve Timing Engine,” International Journal of Engineering and Applied Sciences, Volume 4, ISSN 2305-8269, 2013
37. Y. Yi and C. M. DeMinco, “Numerical Investigation of Mixture Preparation in a GDI Engine,” SAE Paper No. 2006-01-3375, 2006.
38. 陳俊瑋、盧裕翔、徐詠富、蘇裕軒、姜嘉瑞、吳浴沂,「CFD 應用於 GDI 引擎層狀燃燒設計」,中華民國第二十屆車輛工程學術研討會,彰化,2015
39. 徐詠富、盧裕翔、蘇裕軒、姜嘉瑞、吳浴沂,「探討可變汽門正時系統對GDI引擎油氣分布之影響」,中華民國第26屆燃燒與能源學術研討會,新竹,2016
40. Jukka-Pekka Keskinen, Ville Vuorinen, Ossi Kaario and Martti Larmi, “Large Eddy Simulation of the Intake Flow in a Realistic Single Cylinder Configuration,” SAE Paper, No. 2012-01-0137, 2012
41. Tomoyuki Hosaka, Taisuke Sugii, Eiji Ishii, Kazuhiro Oryoji, and Yoshihiro Sukegawa “Numerical Study of Internal Combustion Engine using OpenFOAM®,” SAE Paper, No. 2016-01-1346, 2016
42. Zhaolei Zheng, Chuntao Liu, Xuefeng Tian, Xiaoyu Zhang, “Numerical study of the effect of piston top contour on GDI engine performance under catalyst heating mode,” Fuel, Volume 157,Pages 64–72, 2015
43. 鄭瑞圻 、王敬文,「噴油正時對於缸內油氣混合之影響」,中華民國第二十屆車輛工程學術研討會,彰化,2015
44. Sung-Jun Kim, Soungjae Hyun and JaeIn Park, “Optimization of Cold Start Operating Conditions in a Stoichiometric GDI Engine with Wall-guided Piston using CFD Analysis,” SAE Paper, No. 2013-01-2650, 2013
45. 黃紹軒,使用計算流體力學方法於缸內噴油引擎之初步設計,碩士論文,台灣科技大學機械工程系,2009
46. Toshio Shudo, Kazuki Shimamura , and Yasuo Nakajima , 2000, “Combustion and emissions in a methane DI stratified charge engine with hydrogen pre-mixing,” JSAE Paper No. 2000-40-07, 2000.
47. Ozasa Toshihiro and Suzuki Shigeo “Stratified Combustion Engine,” Japan Patent No. 62-051727
48. Onishi Shigeru, “Spark Ignition Fuel Injection Stratified Charge Combustion System and Various Fuels High-Compression Stratified Combustion Engine,” Japan Patent No. 63-001710
49. Horie Kaoru, Takayama Naoki, Takahashi Hitoshi, Matsuura Hiromi, Nakajima Susumu, Takeda Masaaki and Imazeki Mitsuharu, “Gasoline Direct Injection Engine,” Japan Patent No. 2000-034925
50. Fujimoto Masahiko, Harada Yuji, Seto Suketoshi and Yamashita Hiroyuki, “Direct-Injection Gasoline Engine,” Japan Patent No. 2015-161195
51. Iriya Yuichi, “Fuel Injection Control Device of Cylinder Direct-Injection Internal Combustion Engine,” Japan Patent No. 2008-196318
52. T. Kume , Y. Iwamto, K. Iida, M. Murakami, K. Akishino, and H. Ando, 1996, “Combustion control technologies for direct injection SI engine,” SAE Paper No. 960600, 1996.
53. Ueda Takanobu, Okumura Takeshi, Furuno Shigeo, Iguchi Satoru, Akihama Kazuhiro, Taki Masahiro and Yamazaki Satoru “Stratified Charge Combustion Internal Combustion Engine of Spark Ignition Type,” Japan Patent No. 2001-254660
54. Miyamoto Katsuhiko, “Cylinder Direct Injection Spark Ignition Internal Combustion Engine” Japan Patent No. 2012-241605
55. Mitsumoto Hisashi and Aoyama Hisashi, “Control Device for Direct Injection Gasoline Engine” Japan Patent No. 2000-008928
56. Yu Chul-Ho, “Gasoline Direct Injection Engine” Japan Patent No. 2003-120300
57. Harada, J., Tomita, T., Mizuno, H., Mashiki, Z., and Ito, Y., 1997, “Development of direct-injection gasoline engine,” SAE Paper No. 970540, 1997.
58. Yamaguchi Junichi, Matohara Shinya and Inoue Masahiko, “Fuel Injection Device for Direct Injection Gasoline Engine” Japan Patent No. 2011-007046
59. Nakayama Yoko, Sukegawa Yoshihiro and Nogi Toshiji, “Fuel Injection Device, Internal Combustion Engine, and Controlling Method of Fuel Injection Device, ” Japan Patent No. 2004-036554
60. Okada Yoshihiro, Taniguchi Satoshi, Kanda Mutsumi, “Fuel Injection Control Device,” Japan Patent No. 2003-322022
61. Ono Eiji, Nakamura Norihiko, Ueno Makoto, Ito Kazuhiro and Ishida Yasuhiko, “Gasoline Injection Engine With Auxiliary Combustion Chamber,” Japan Patent No. 04-001429
62. Suzuki Akio and Sakurai Yoshito, “Internal Combustion Engine,” Japan Patent No. 2007-024009
63. Nakada Koichi, “Internal Combustion Engine Control Device,” Japan Patent No. 2007-315354
64. Kamio Junichi, “Control Device for Internal Combustion Engine,” Japan Patent No. 2014-020264
65. Okamoto Yoshio, Miyajima Ayumi, Kadomukai Yuzo, Yamakado Makoto, Amo Kiyoshi, Ishikawa Toru, “Fuel Injection Valve for Cylinder Injection,” Japan Patent No. 2000-257534
66. Urushibara Tomonori, Yamaguchi Koichi and Hiratani Koji, “Cylinder-Direct Injection Type Gasoline Engine,” Japan Patent No. 2003-049679
67. Vanweelden Curtis L. and Bacon Kathryni, “High Flow Control Valve for Automobile Fuel Injection System,” Japan Patent No. 2004-132354
68. Umasaki Masatoshi, Saito Kimitaka, Kano Masao and Furuno Shigeo, “Cylinder Direct Injection Engine With Supercharger,” Japan Patent No. 2001-214812
69. Aoyama Hisashi, Fukuda Takashi, Okada Keiji and Tsuchida Hirobumi, “Stratified Combustion Engine,” Japan Patent No. 2001-065396
70. 曾重仁,Fluent基礎課程講義,中央大學能源技術研究室,民國95年。
71. C.Preussner, C.Doring, S.Fehler, and S.Kampmann, “Gdi:interaction between mixture preparation,combustion system and injector performance,” International Congress and Exposition, Pages 23–26, 1998.
72. H. K. Versteeg and W. Malalasekera, “An Introduction to Computational Fluid Dynamics: The Finite Volume Method,” New York: John Wiley & Sons, 1995, pp. 150-155.
73. Idelchik and I. E., Handbook of Hydraulic Resistance, 3rd Edition, 1996
74. Raithby, G. D. and K. G. T. Hollands, “A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems,” Advances in Heat Transfer, Vol. 11, Pages 265-315, 1975.
75. Xianjing Li and Liguang Li, “A Study on Combustion and Emission Characteristics of GDI Engine for HEV at Quick Start,” SAE Paper, No. 2014-01-2709, 2014
76. 郭益銘,運用CFD數值方法於SDI引擎稀油極限提升之研究,碩士論文,台北科技大學車輛工程系,2012
77. Isabella Bücker, Daniel-Christian Karhoff, Michael Klaas, and Wolfgang Schröder, “Engine In-Cylinder Flow Control via Variable Intake Valve Timing,” SAE Paper, No. 2013-24-0055, 2013
78. Aimin Du, Zhongpan Zhu, Chuanchuan Chu, and Mengmeng Li, “Effects of Injector Spray Layout and Injection Strategy on Gas Mixture Quality of Gasoline Direct Injection Engine,” SAE Paper, No. 2015-01-0747, 2015
79. He Changming and Xu Sichuan, “The Investigation and Application of Variable Tumble Intake System on a GDI Engine,” SAE Paper, No. 2014-01-2885, 2014
80. Congbo Yin, Zhendong Zhang, Yuedong Sun, Tao Sun and Renjie Zhang, “Effect of the piston top contour on the tumble flow and combustion features of a GDI engine with a CMCV: a CFD study,” Engineering Applications of Computational Fluid Mechanics, Vol. 10, Pages 312-330, 2016
論文全文使用權限:同意授權於2016-08-08起公開