現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:推管工程的元押推進力探討 [以論文名稱查詢館藏系統]
論文英文名稱:Analysis and Prediction of Jacking Force [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:103
畢業學期:第一學期
中文姓名:黃惠文
英文姓名:Haung Hui-Wen
研究生學號:101428030
學位類別:碩士
語文別:中文
口試日期:2015/01/12
指導教授中文名:倪至寬
口試委員中文名:陳水龍;葛宇甯
中文關鍵詞:推管工程;元押推力;面盤阻力;管線摩擦力;滑材;方向偏移;土壤分類
英文關鍵詞:Pipe Jacking;Jacking Force;Face Pressure;Frictional Resistance;Lubricant;Misalignment;Soil Classification
論文中文摘要:泥水加壓工法是利用皂土穩定液的液壓來達到切削面地盤的穩定,同時藉由皂土穩定液的循環來排土,因此,皂土穩定液的單位重、黏滯度與循環的速度皆為重要的操作與品管參數。推進機的操作需要具備長年的經驗來判斷推進時所發生的任何突發狀況,例如在推進路徑遭遇浮木、巨石、複合地盤等等的變化,其中最重要的為判別切削面盤前方的土壤種類,不同粒徑大小的土壤,需要選擇推進機面盤適當的開口率與切削刀具,而推進過程必須因應地質的變化,隨時調整推進的速度及送排泥的壓力,才得以順利推進。本研究選擇了4段卵礫石層的推管工地,在推管過程,逐管記錄每支推管的相關資料,並由這些資料研判分析土壤種類、推管偏移量、滑材注入模式與其他現地的相關因子對元押推力的影響。
研究成果如下:1.利用推管的儀表數據與土渣排放情況可推估地盤的統一土壤分類。2.分析滑材的注入量與滑材分佈的均勻度,若每支管子外側的超挖區均包覆著滑材,則能有效的降低土壤與管壁之間的摩擦力。3.切削盤遭遇細料土壤時,導致面盤阻力增加,而造成元押推力的增加,但是,當切削盤遭遇粗料土壤時,面盤阻力將減少,元押推力也隨之減少,這種因為面盤阻力所造成的元押推力之變化是可以增減的。4. 推管過程若機身發生嚴重的偏移時,元押推力將因摩擦力的增加而上升,並且縱使管線修正回設計中心線後,因方向偏移而造成元押推力的增量維持,具有累計的效果。
論文英文摘要:Slurry Pressure Balance Machine (SPBM) uses a mix of bentonite and water to remove the excavated soil. The slurry and muck is pumped out of the tunnel to a separation plant at the surface, where the muck is separated from the slurry and the slurry is reused within the slurry system. The pressure of the slurry is used to balance the groundwater and face pressure, ensuring a watertight head at the front of the TBM.
During the pipe jacking, the jacking force is an important parameter, Theoretically, jacking force is the total needed forces to overcome on frictional resistance around pipe string and assumed face pressure is a constant, but in this paper, The main component of the jacking force is due to face pressure, When the lubrication used, the frictional resistance can be reduced from 45 to 90%. The jacking Force controlled by the soil type、misalignment of the pipes、lubricant using and work stoppage...etc.
This paper discusses four methods of prediction jacking force during a slurry pipe jacking construction and make those conclusions : (1). Annular space is stabilized with sufficient amount of lubricant and pipe weight is less than buoyancy, resulting in no direct contact between pipe and ground soil. Any local variation of jacking force is caused either by face pressure due to driving from coarse soil to fine soil or wood encountered. (2). If deviation is more than thresh hold value of 60 mm, the friction force between pipe and ground soil increase. This effect is cumulative and remains constant in the drive.
論文目次:第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 6
1.3研究內容與流程 9
第二章 現場推管設備介紹 11
2.1 泥水加壓工法設備介紹 12
2.1.1.推進機頭介紹 12
2.1.1.1機身方向修正辦法 14
2.1.1.2中胴設備介紹 22
2.1.1.3後胴設備介紹 26
2.1.2滑材設備 28
2.1.3泥水處理設備 29
2.1.4控制室設備 35
2.1.4.1送、排泥幫浦轉速(P1、P2)設定 37
2.1.4.2送、排泥壓力 38
2.1.4.3切削盤面扭力變化 39
2.1.4.4排泥流量 40
2.1.4.5元押推進設備 41
2.1.4.6排土渣形式 42
2.2 推管施工步驟 43
第三章 推管中滑材之探討與分析 47
3.1滑材拌合步驟與配比 47
3.2 現場滑材注入量紀錄方法 51
3.3 滑材注入模式(滑材範圍分布) 54
3.4 滑材注入量與超挖區對元押推力之影響 61
第四章 影響元押推力的因子分析與探討 67
4.1 推管時滑材的注入量 67
4.2 面盤前方的土壤分類 68
4.3 機身方向偏移量 78
4.4 推管停工之延時效應 83
4.4.1短時間的停工延時效應 84
4.4.2長時間的停工延時效應 85
第五章 元押推力預估模式 87
5.1. 元押推力預估模式 87
5.1.1 Model 1 87
5.1.2 Model 2 89
5.1.3 Model 3 92
5.1.4 Model.4 95
5.2 元押推力預測結果 97
5.3 預測模式之討論 101
5.3.1 Model 3預測滑材注入足夠時的元押推力表現行為 101
5.3.2 推進長度0~15m間的元押推力行為 104
第六章.結論與建議 109
6.1結論 109
6.2 建議 110
第七章.參考文獻 111
論文參考文獻:1. Akkaya, A.B., Microtunnel boring machine performance comparison at different formations, World Tunnel Congress - Underground Facilities for Better Environment and Safety, 2008
2. Anders Laeskogen Palm,Pipe Jacking and TBM tunnelling in soft soil conditions, Norwegian University of Science and TechnologyDepartment of Civil and Transport Engineering, 2012.
3. ASCE 27, Standard Practice for Direct Design of Precast Concrete Pipe for Jacking in Trenchless Construction. Reston, Virginia 20191-4400, 2000, p. 51.
4. Atalah, Alan; Bennett, David; and Iseley, Tom, Estimating the Required Jacking Force. Construction Management Faculty Publications,1994, Paper 7.
5. Broere, W., Faassen, T.F., Arends, G., van Tol A.F.. Modelling the boring of curves in (very) soft soils during microtunnelling. Tunnelling and Underground Space Technology, , 2007,22(5-6), 600-609.
6. Babendererde, L, Problems of TBMs in Water Bearing Ground, 2003.
7. Concrete Pipe Association of Australasia (CPAA), Jacking design guidelines. Concrete Pipe Association of Australasia ,2008
8. Cheng, M., Zhang, W., Sun, P., and Huang, L, The Use of Bentonite Mud in the MTBM of Rock Areas ICPTT , 2012: pp. 1665-1672.
9. DWA-A 125E, Pipe Jacking and Related Techniques. DWA German Association for Water, Wastewater and Waste-Heuss-Allee 1753773 Hennef, Germany, 2008.
10. Fuerst, T. , Successful Technology for Utility Installations in Mixed Ground_Underground Construction Technology_ 2008 Underground Construction Technology International Conference & Exhibition, Cobb County Galleria Center, Atlanta, GA - January 29-31.
11. Kimberlie Staheli, P.E. and Glenn Duyvestyu., Snohomish River Crossing: Bring on the Boulders Success on the Second Attempt, Bennett/ Staheli Engineers,Seattle, WA
12. Khazaei, S., Shimada, H., Matsui, K, Analysis and Prediction of Thrust in Using Slurry Pipe Jacking Method, 1994.
13. Ni, J.C., Cheng, W.C, Steering Characteristics of Microtunnelling in Various Soils. Tunnelling and Underground Space Technology 28, 2012, pp. 321-330.
14. Nicholas, P., Soltau, W, Micro Tunnelling –Methods and Developments. International Conference and Exhibition on Tunnelling and Trenchless Technology, 2006
15. Ni, James C., Wen-Chieh Cheng. Steering Characteristics of Microtunnelling in Various Soils, Tunnelling and Underground Space Technology, Volume28, [SCI] 2012, pp321-330.
16. Ni, James C., Wen-Chieh Cheng. Steering Efficiency of Microtunnelling in Various Deposits. Geotechnical Special Publication No.221: Tunnel Management, Emerging Technologies, and Innovation, American Society of Civil Engineers ,ISBN 978-0-7844-1174-2, [EI] ,2011, P 33-39.
17. Pigott, C.P , Mud cleaning for pipejacking and slurry shield tunnelling applications. Pigott Shaft Drilling Ltd., Preston, England , 2003.
18. Paul Norris, The Behavior of Jacked Concrete Pipes during Site Installation, Thesis submitted for the degree of Doctor of Philosophy at the University of Oxford,1992.
19. Pellet, A.L., Kastner, R, Experimental and Analytical Study of Friction Forces During Microtunneling Operations. Tunnelling and Underground Space Technology 17, 2002, pp.83-97.
20. Pipe Jacking Association (PJA), Guide to best practice for the installation of pipe jacks and micro-tunnels, Marshall Robinson Roe, London, UK ,1995.
21. Rahjoo, S, An Investigation of Pipe Jacking Loads in Trenchless Technology, A Thesis in Civil and Environmental Engineering, University of Texas at Arlington, 2012.
22. Rahjoo, S., Najaf, M., Williammee, R., Khankarli, G, Comparison of Jacking Load Models for Trenchless Pipe Jacking. Pipelines : Innovations in Design, Construction, Operations, and Maintenance, 2012, 1507-1520.
23. Schrank, J.S., Havekost, M.D., Njoloma, S.M, Pipe ramming under three active railroad lines in difficult soil conditions. In: North American Society for Trenchless Technology, No-Dig ,2009.
24. Shao, B., Ma, B., Shi, L., A Sewer Pipeline Installation Using Pipe-jacking in Lang Fang. ICPTT 2009 © ASCE, 1413-1424.
25. Shou, K., Yen, J., Liu, M., On the Frictional Property of Lubricants and its Impact on Jacking Force and Soil–Pipe Interaction of Pipe-Jacking. Tunnelling and Underground Space Technology 25, 2010 , pp.469-477.
26. Staheli, K., Jacking Force Prediction: An Interface Friction Approach Based On Pipe Surface Roughness, A Dissertation in Civil and Environmental Engineering, Georgia Institute of Technology ,2006.
27. Staheli, K., Duyvestyu, G., Snohomish River Crossing: Bring on the Boulders Success on the Second Attempt.
28. Stein. D, Practical Guideline for the Application of Micro-tunneling Methods, Rademann, Ludinghausen, Germany ,2003, p. 114.
29. Tang, L, Discussion on theoretical formulae of lateral friction resistance for pipe-jacking. J. Rock and Soil Mechanics. 25(2), 2004 , p.574-580.
30. Terzaghi, K., Theoretical Soil Mechanics, Wiley and Sons, New York ,1943.
31. 倪至寬、蔡諭璋,“小管掘進機在各種地盤修正推進方向之效率”,台灣公路工程,第37卷,第2期,中華民國100年2月15日,P.37-48。
32. 倪至寬、蔡諭璋,“管線推進機具操控性之研究-以COBRA ( TRH-400 )為例”,台灣公路工程,第36卷,第4期,中華民國99年4月15日,P.02-28。
33. 倪至寬、蔡諭璋, “小管徑泥土壓平衡工法推進要領-以KOMATSU (TP75SCL-400)為例”,台灣公路工程,第36卷,第3期,中華民國99年3月15日,P.28-48。
34. 倪至寬、蔡諭璋, “管線工程常見施工障礙案例之探討”,台灣公路工程,第36卷第1期,中華民國99年1月15日,P.20-P.40。
35. 倪至寬、蔡諭璋, “長距離直線推進之探討-以泥水加壓式工法為例”,台灣公路工程, 第35卷第12期,中華民國98年12月15日,P.10-P.40。
36. 內政部 營建署,“下水道推進施工技術參考手冊”,下水道工程技術研發計畫,中華民國98年12月。
37. 倪至寬、蔡諭璋, “改良及標準地箭式推進工法要領之探討”,台灣公路工程, 第35卷第9期,中華民國98年9月15日,P.9-P.26。
38. 倪至寬、蔡諭璋, “不同掘進機在卵礫石層線形控制之研究”,台灣公路工程, 第35卷第5、6期,中華民國98年6月15日,P.2-P.47。
39. 倪至寬、蔡諭璋, “泥濃式工法在北投磺港溪案例之研究”,台灣公路工程, 第35卷第4期,中華民國98年4月15日,P.22-P.47。
40. 倪至寬、蔡諭璋, “各種型式掘進機於卵礫石層中掘進之探討”,台灣公路工程, 第34卷第5期,中華民國97年5月,P.17-P.33。
41. 倪至寬,衛生下水道施工與標準作業程序(上)、(下),詹氏書局,(2005)。
42. 高俊松、張固宇, “污水管線推進工程困難地質施工之探討-以花蓮(美崙)地區卵礫石層為例”,中華民國94年。
43. 倪至寬,基礎施工與品管,詹氏書局,2004。
論文全文使用權限:不同意授權