現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:不同鞋內墊材料之硬度與勁度組合對於足底壓力分佈的影響 [以論文名稱查詢館藏系統]
論文英文名稱:Effects of different insole material hardness and stiffness combinations on the plantar ressure distribution [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:機電整合研究所
畢業學年度:99
出版年度:100
中文姓名:李建軒
英文姓名:Chien-Hsuan Lee
研究生學號:97408096
學位類別:碩士
語文別:中文
口試日期:2010-07-06
論文頁數:78
指導教授中文名:陳文斌;鄧復旦
指導教授英文名:Weng-Pin Chen;Fuk-Tan Tang
口試委員中文名:呂東武;楊哲化
口試委員英文名:Tung-Wu Lu;Che-Hua Yang
中文關鍵詞:鞋內墊硬度勁度足底壓力足部有限元素模型動態分析
英文關鍵詞:InsoleHardnessStiffnessPlantar pressureFinite element foot modeldynamic simulation
論文中文摘要:過大的足底壓力集中一般被認為是造成糖尿病患者因神經性病變造成足部潰瘍的主要因素。臨床上常使用全觸式鞋內墊進行保守性治療,以達到壓力重新分佈及減壓的效果,並常以鞋墊材料之硬度作為選擇材料之標準。本研究目的為結合足底壓力實驗及三維動態有限元素分析,探討不同硬度及勁度之鞋內墊材料特性對於足底壓力峰值的影響。
本研究量測十三種市售材料之硬度及勁度,並以此作為選擇材料之依據製作九雙不同材料組合之雙層全觸式鞋內墊,進行足底壓力量測。此外,建構包含足部、全觸式鞋內墊及鞋具之三維有限元素模型進行動態有限元素分析。而有限元素分析中之鞋內墊及足底軟組織之非線性材料特性則是由材料試驗機及本研究室所開發之足底軟組織力量位移探測系統所取得。
研究結果顯示材料硬度與勁度間相關係數為0.814,呈現顯著高度正相關。利用足壓實驗及有限元素分析皆得到上層材料硬度或勁度上升,前足及後足之壓力峰值或von Mises stress則增加。足底壓力峰值(21%)和盟麥斯應力( 8%)會隨著上層材料之硬度(61%)及勁度增加(71%)而上升。第一、第二及第三蹠骨頭介面間足底軟組織最大盟麥斯應力,於硬度或勁度較低之下層材料,會隨著上層材料的硬度或勁度增加而上升。不論使用何種鞋內墊材料組合,軟組織之最大盟麥斯應力發生於第三蹠骨頭下方介面間,大小為350-400kPa。
本研究所提供之不同鞋墊材料特性資料庫及一套完整實驗和有限元素分析流程,可作為未來鞋內墊製作前之有效評估工具。
論文英文摘要:High plantar pressure is often believed to be associated with plantar ulceration in diabetic patients with neuropathy. Custom-made foot orthoses are frequently prescribed in routine clinical practice to prevent or treat plantar ulcers by reducing and redistributing the exceeded plantar pressure. However, the insole hardness is often used as a criterion in selecting insole material. The objective of this study was to combine the plantar pressure measurement and three-dimensional dynamic finite element (FE) analysis to evaluate the effects of insole material combinations with different hardness and stiffness value on the peak plantar pressure (PPP) distribution.
Thirteen commercial orthotic materials were collected for measuring the stiffness and hardness values. Based on the results of material testing, nine pairs of two-layer total contact insoles were manufactured. The plantar pressure measurement and a three-dimensional finite element model of the human ankle-foot complex, total contact insole and outsole layer were developed to evaluate the effects of material combination on the plantar pressure distribution by the same subject. The non-linear material properties of FE model of insole and soft tissue were measured by using material testing machine and self-established instrument.
For the correlation analysis, highly significant positive correlation was found between the insole material stiffness and hardness(r=0.814). From the plantar pressure measurement and finite element analysis, both in the forefoot and rearfoot region, the PPP or von Mises stress was raised with the hardness or stiffness increased of upper layer material under the same bottom layer material. In our finding, PPP and von Mises stress increased (21% and 8%) in association with the increased hardness and stiffness of upper-layer material (61% and 71%), respectively. From finite element analysis, the max. von Mises stress in the 1st, 2nd and 3rd metatarsal was raised with the hardness increased of upper layer material under the lower hardness or stiffness bottom layer material. Moreover, the results showed the max. von Mises stress of 350-400kPa, located below the third metatarsal head surface in all of the insole material combination. The established database of different insole materials and an integrated process of experiment and finite element analysis of this study will serve an effective evaluation tool for insole design.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論1
1.1 引言 1
1.2 研究背景與文獻回顧 2
1.2.1足底壓力分佈與量測 2
1.2.2影響足底壓力分佈的因素 3
1.2.3 鞋內墊之構造與功用 4
1.2.4 影響鞋墊減壓效果之因素 4
1.2.5 減壓鞋墊效益之有限元素分析評估 6
1.2.6 動態有限元素分析 8
1.2.7 文獻總結 9
1.3 研究目的 9
第二章 材料與方法 11
2.1 研究流程 11
2.2 材料硬度測試及勁度測試 13
2.2.1 勁度測試 13
2.2.2 硬度測試 15
2.3 足底壓力量測實驗 16
2.3.1 鞋墊製作及材料選擇 16
2.3.2 鞋內墊式壓力量測系統及實驗 19
2.3.3 足底壓力之後處理分析系統 21
2.4 右足動態有限元素分析 22
2.4.1 足部模型建立 22
2.4.2 地板之有限元素模型 25
2.4.3 鞋內墊之有限元素模型 26
2.4.4 有限元素模型之材料性質 28
2.4.5 有限元素模型之邊界條件設定 32
2.4.6 有限元素模型接觸行為之設定 37
2.4.7 有限元素模型之運算與求解 37
2.4.8 有限元素模型之結果資料擷取 38
第三章 結果 39
3.1 硬度與勁度量測 39
3.2 足底壓力量測 40
3.2.1 標準鞋具之動態步行足底壓力量測 40
3.2.2 穿著鞋內墊之動態步行足底壓力量測 40
3.2.3 足底壓力與材料特性關係比較 42
3.3 有限元素模型 45
3.3.1 右足於足跟著地期至足底平貼期階段步態行為 45
3.3.2 足部有限元素模型之驗證 46
3.3.2.1 地板反作用力 46
3.3.2.2 光球於步態實驗及有限元素分析中位置 47
3.3.3 足底壓力與分析之盟麥斯應力比較驗證 50
3.3.4 不同材料組合之足底壓力與右足有限元素分析比較 52
3.3.5 蹠骨頭下方與軟組織介面間最大盟麥斯應力 57
第四章 討論 60
4.1 標準鞋具之步行動態足底壓力 60
4.2 硬度測試實驗 60
4.3 鞋內墊材料之硬度及勁度之關係 62
4.4 鞋內墊之硬度與勁度對於足底壓力之影響 63
4.5 足部有限元素分析 64
4.5.1 有限元素模型之建立 64
4.5.2 右足有限元素模型軟組織材料設定之模擬 65
4.5.3 右足有限元素模型邊界條件設定之模擬與驗證 66
4.6 足底壓力實驗與右足足部有限元素分析比較 67
4.6.1 蹠骨頭下方軟組織之盟麥斯應力 69
第五章 結論 72
參考文獻 73
作者簡介 78
論文參考文獻:[1]中華民國行政院衛生署. Available: http://www.doh.gov.tw/
[2]F. Beely, "Mechanik des stehens," ed: Langenbecks Arch Chir, 1982.
[3]M. Mareey, "De la locomotion terrestre chez les bipeds et les quadrupeds," in J. de l' Anat. Et de la Physiol, ed, 1873, pp. 9-42.
[4]P. R. Cavanagh, M. M. Rodgers and A. Iiboshi, "Pressure distribution under symptom-free feet during barefoot standing," Foot Ankle, vol. 7, 1987, pp. 262-276.
[5]C. Jordan, C. Payton and R. Bartlett, "Perceived comfort and pressure distribution in casual footwear," Clin Biomech (Bristol, Avon), vol. 12, 1997, p. S5.
[6]P. T. A. Bryant, K. Singer, "Plantar pressure distribution in normal, hallux valgus and hallux limitus feet," The Foot, vol. 9, 1999, pp. 115-119.
[7]G. L. Warren, R. M. Maher and E. J. Higbie, "Temporal patterns of plantar pressures and lower-leg muscle activity during walking: effect of speed," Gait Posture, vol. 19, 2004, pp. 91-100.
[8]J. M. Burnfield, C. D. Few, O. S. Mohamed and J. Perry, "The influence of walking speed and footwear on plantar pressures in older adults," Clin Biomech (Bristol, Avon), vol. 19, 2004, pp. 78-84.
[9]M. J. Hessert, M. Vyas, J. Leach, K. Hu, L. A. Lipsitz and V. Novak, "Foot pressure distribution during walking in young and old adults," BMC Geriatr, vol. 5, 2005, p. 8.
[10]A. Nagel, F. Fernholz, C. Kibele and D. Rosenbaum, "Long distance running increases plantar pressures beneath the metatarsal heads: a barefoot walking investigation of 200 marathon runners," Gait Posture, vol. 27, 2008, pp. 152-155.
[11]S. A. Bus, J. S. Ulbrecht and P. R. Cavanagh, "Pressure relief and load redistribution by custom-made insoles in diabetic patients with neuropathy and foot deformity," Clin Biomech (Bristol, Avon), vol. 19, 2004, pp. 629-638.
[12]B. T. Bates, "Comment on 'The Influence of Running Velocity and Midsole Hardness on External Impact Forces in Heel-Toe-Running'," J Biomech, vol. 22, 1989, pp. 963-965.
[13]B. M. Nigg, H. A. Bahlsen, S. M. Luethi and S. Stokes, "The influence of running velocity and midsole hardness on external impact forces in heel-toe running," J Biomech, vol. 20, 1987, pp. 951-959.
[14]B. T. Bates, L. R. Osternig, J. A. Sawhill and S. L. James, "An assessment of subject variability, subject-shoe interaction, and the evaluation of running shoes using ground reaction force data," J Biomech, vol. 16, 1983, pp. 181-191.
[15]財團法人鞋類暨運動休閒科技研發中心. Available: http://www.shoenet.org.tw/
[16]M. Lord and R. Hosein, "Pressure redistribution by molded inserts in diabetic footwear: a pilot study," J Rehabil Res Dev, vol. 31, 1994, pp. 214-221.
[17]H. Kato, T. Takada, T. Kawamura, N. Hotta and S. Torii, "The reduction and redistribution of plantar pressures using foot orthoses in diabetic patients," Diabetes Res Clin Pract, vol. 31, 1996, pp. 115-118.
[18]J. T. Cheung and M. Zhang, "Parametric design of pressure-relieving foot orthosis using statistics-based finite element method," Med Eng Phys, vol. 30, 2008, pp. 269-277.
[19]P. C. Sun, H. W. Wei, C. H. Chen, C. H. Wu, H. C. Kao and C. K. Cheng, "Effects of varying material properties on the load deformation characteristics of heel cushions," Med Eng Phys, vol. 30, 2008, pp. 687-692.
[20]W. A. Brekelmans, H. W. Poort and T. J. Slooff, "A new method to analyse the mechanical behaviour of skeletal parts," Acta Orthop Scand, vol. 43, 1972, pp. 301-317.
[21]D. Lemmon, T. Y. Shiang, A. Hashmi, J. S. Ulbrecht and P. R. Cavanagh, "The effect of insoles in therapeutic footwear--a finite element approach," J Biomech, vol. 30, 1997, pp. 615-620.
[22]W. P. Chen, C. W. Ju and F. T. Tang, "Effects of total contact insoles on the plantar stress redistribution: a finite element analysis," Clin Biomech (Bristol, Avon), vol. 18, 2003, pp. S17-24.
[23]S. Goske, A. Erdemir, M. Petre, S. Budhabhatti and P. R. Cavanagh, "Reduction of plantar heel pressures: Insole design using finite element analysis," J Biomech, vol. 39, 2006, pp. 2363-2370.
[24]J. T. Cheung and M. Zhang, "A 3-dimensional finite element model of the human foot and ankle for insole design," Arch Phys Med Rehabil, vol. 86, 2005, pp. 353-358.
[25]吳淑霞,全觸式鞋內墊與足部之生物力學評估,碩士論文,中原大學醫學工程所,桃園中壢,1998.
[26]吳昱沁,部分足部截肢病人新式足部輔具之生物力學研究,碩士論文,中原大學醫學工程所,桃園中壢,2001.
[27]王建章,足底軟組織與鞋內墊力學性質對足壓分佈影響之有限元素分析,碩士論文,中原大學醫學工程所,桃園中壢,2003.
[28]蔡勝平,加入碳纖維板對功能性足部輔具之生物力學評估,碩士論文,中原大學醫學工程所,桃園中壢,2003.
[29]林建宏,足底軟組織與鞋內墊力學性質對足壓分佈影響之有限元素分析,碩士學位論文 中原大學,桃園中壢,2006.
[30]J. T. Cheung, M. Zhang, A. K. Leung and Y. B. Fan, "Three-dimensional finite element analysis of the foot during standing--a material sensitivity study," J Biomech, vol. 38, 2005, pp. 1045-1054.
[31]林師誠,正常足部之三維動態有限元素分析,碩士論文,中原大學醫學工程所,桃園中壢,2004.
[32]張紹勳, 張紹評 and 林秀娟, SPSS For Windows統計分析-初等統計與高等統計4th: 松崗電腦圖書資料股份有限公司, 2000.
[33]葉齊偉,使用三維動態有限元素分析探討步行速度與鞋具對於足底壓力的影響,碩士論文,中原大學醫學工程所,桃園中壢,2005.
[34]B. A. Todd, S. L. Smith and T. Vongpaseuth, "Polyurethane foams: effects of specimen size when determining cushioning stiffness," J Rehabil Res Dev, vol. 35, 1998, pp. 219-224.
[35]"ASTM D575-91 Standard Test Methods for Rubber Properties in Compression. ,", 2001.
[36]"ASTM D2240-05 Standard Test Method for Rubber Property-Durometer Hardness.,", 2005.
[37]J. Burns, J. Crosbie, A. Hunt and R. Ouvrier, "The effect of pes cavus on foot pain and plantar pressure," Clin Biomech (Bristol, Avon), vol. 20, 2005, pp. 877-882.
[38]D. T. Reilly and A. H. Burstein, "Review article. The mechanical properties of cortical bone," J Bone Joint Surg Am, vol. 56, 1974, pp. 1001-1022.
[39]A. Gefen, "Stress analysis of the standing foot following surgical plantar fascia release," J Biomech, vol. 35, 2002, pp. 629-637.
[40]H. Yamada, Strength of biological materials: The Williams & Wilkins, 1970.
[41]F. Duck, Physical Properties of Tissue. San Diego: A Comprehensive Reference Book, 1990.
[42]S. Jacob and M. K. Patil, "Three-dimensional foot modeling and analysis of stresses in normal and early stage Hansen's disease with muscle paralysis," J Rehabil Res Dev, vol. 36, 1999, pp. 252-263.
[43]V. C. Mow, C. S. Proctor and M. A. Kelly, "Biomechanics of articular cartilage. In: Nordin, M., Frankel, V. Eds, Basic Biomechanics of the Musculoskeletal System. ," Malvern PA, 1989, pp. 31-57.
[44]J. T. Cheung, M. Zhang and K. N. An, "Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex," Clin Biomech (Bristol, Avon), vol. 19, 2004, pp. 839-846.
[45]J. T. Cheung, K. N. An and M. Zhang, "Consequences of partial and total plantar fascia release: a finite element study," Foot Ankle Int, vol. 27, 2006, pp. 125-132.
[46]H. B. Kitaoka, Z. P. Luo, E. S. Growney, L. J. Berglund and K. N. An, "Material properties of the plantar aponeurosis," Foot Ankle Int, vol. 15, 1994, pp. 557-560.
[47]A. Leardini, M. G. Benedetti, L. Berti, D. Bettinelli, R. Nativo and S. Giannini, "Rear-foot, mid-foot and fore-foot motion during the stance phase of gait," Gait Posture, vol. 25, 2007, pp. 453-462.
[48]J. E. Miller-Young, N. A. Duncan and G. Baroud, "Material properties of the human calcaneal fat pad in compression:experiment and theory," Journal of Biomechanics, vol. 35, 2002, pp. 1523–1531.
論文全文使用權限:不同意授權