現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以快速傅立葉轉換建立建築耗能預測模型 [以論文名稱查詢館藏系統]
論文英文名稱:Modelling Building Energy Consumption via Fast Fourier Transform [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:能源與冷凍空調工程系碩士班
畢業學年度:101
出版年度:102
中文姓名:周思維
英文姓名:Sz-Wei Chou
研究生學號:100458043
學位類別:碩士
語文別:中文
口試日期:2013-06-22
論文頁數:113
指導教授中文名:蔡尤溪
口試委員中文名:李魁鵬;林啟基
中文關鍵詞:傅立葉轉換快速傅立葉轉換建築能源建築耗能預測模型
英文關鍵詞:Fourier TransformFast Fourier TransformBuilding EnergyBuilding Energy Consumption Prediction
論文中文摘要:本論文以快速傅立葉轉換作為研究工具,分析對象為影響建築耗能的各項參數,將各項參數由時域轉換為頻域,成功地分析出各項參數具備的週期性以及頻譜圖,以找出各種頻率的振幅以及相位值,藉此建立週期性參數的模型,並且歸納出建築尖峰耗能的運轉週期。
透過傅立葉轉換,處於時域的資料能夠轉換為頻域的資料,各項參數皆可以表示為多組的弦波疊加而成,而各個弦波都有屬於該弦波的頻率、振幅以及相位值,如此便能夠分析出週期性參數的相互關聯,並且建立該參數的預測模型。
本論文以決定係數(R2)值判斷模型的準確率,並且採用實際建築作為案例,利用eQUEST建築耗能模擬軟體建立3D立體模型,以輸出全年度的逐時資料,作為分析參數準確率的判斷依據,結果顯示無論是天氣資料、建築熱負荷或是建築耗能…等參數,R2值皆高達九成九以上。
論文英文摘要:The Fast Fourier Transform was applied in this thesis. Various parameters that have impact to building energy were used in the analysis. Energy use data were transformed from time domain into frequency domain. This thesis successful developed the periodicity and the spectrum of various parameters. The amplitude and the phase of variety frequencies were determined in the study. The periodic parameter model was built by conducting analysis on the building energy computation results. The periodicity of building peak energy demand was also discussed.
Through the Fast Fourier Transform, data could be transform form time domain into frequency domain. Therefore the time variation of the parameters can be simulated by recombination of sinusoidal functions. Each sinusoidal function has its own frequency, amplitude and phase. The correlations between various parameters were determined and the parameters were also modeled mathematically.
In order to acquire annual hourly building energy data, eQUEST (the QUick Energy Simulation Tool) was applied to build a 3D model for an actual building case. The annual hourly energy data was used to verify the validity of Fast Fourier Transform model. Coefficient of determination (R2) was used to evaluate the validity of the models. The Fast Fourier Transform models including weather conditions, building thermal load, and energy consumption. R2 of the models were found to be higher than 99%.
論文目次:摘 要 i
ABSTRACT ii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 研究背景與目的 1
1.1. 研究背景 1
1.2. 研究目的 6
第二章 文獻回顧 7
2.1. 文獻回顧導讀 7
2.2. 使用工程方法的相關文獻 8
2.3. 使用統計方法的相關文獻 15
2.4. 使用類神經網路的相關文獻 19
2.5. 使用支援向量機的相關文獻 24
2.6. 使用灰色建模的相關文獻 27
2.7. 理論模型之間的比較 29
2.8. 使用傅立葉轉換分析的相關文獻 30
第三章 研究方法 36
3.1. 研究流程 36
3.2. 傅立葉轉換 37
3.2.1. 快速傅立葉轉換–離散傅立葉轉換的快速演算法 38
3.2.2. 資料長度的選擇 40
3.2.3. 柵欄效應 41
3.2.4. 頻譜洩漏 43
3.2.5. 對稱性 44
3.3. 建立數理模型 45
3.4. 使用軟體 46
3.4.1. eQUEST 47
3.4.2. Microsoft Excel 47
3.4.2.1. Excel的快速傅立葉 47
3.5. 準確率分析方法 48
第四章 分析樣本 49
4.1. 案例建築 49
4.1.1. 天氣資料 52
4.1.2. eQUEST模型的逐月耗能 52
4.2. 參數類型 54
第五章 結果與討論 56
5.1. 分析樣本的頻譜圖與週期性 56
5.1.1. 週期性綜合比較 87
5.2. 分析樣本的數理模型 88
5.2.1. 參數趨勢與模型趨勢 92
5.2.2. 各個參數模型的準確率 108
第六章 結論 109
參考文獻 110
論文參考文獻:[1] J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson, Climate Change 2001-The Scientific Basis, Cambridge: Cambridge University Press, 2001, pp. 99-182.
[2] BP Statistical Review of World Energy June 2012: http://www.bp.com/statisticalreview
[3] CO2 Now Organization: http://co2now.org/
[4] BBC NEWS WORLD: http://www.bbc.co.uk/news/world-15459643
[5] U.S. Energy Information Administration: http://www.eia.gov/
[6] 經濟部能源局、財團法人台灣綠色生產力基金會,2012非生產性質行業能源查核年報,臺北:財團法人台灣綠色生產力基金會,2012,第12頁。
[7] 張寅祺,外氣需量控制用於空調節能之研究,碩士論文,國立臺北科技大學能源與冷凍空調工程研究所,臺北,2008年。
[8] 彭柏翰,多功能大型空間空調外氣需量控制策略,碩士論文,國立臺北科技大學能源與冷凍空調工程研究所,臺北,2010年。
[9] 葉清華,以效率區分法作為多台空調主機控制策略分析,碩士論文,國立臺北科技大學能源與冷凍空調工程研究所,臺北,2010年。
[10] Al-Homoud MS, “Computer-aided building energy analysis techniques,” Building and Environment, vol. 36, no. 4, 2001, pp.421–433.
[11] 王彥涵,以逐時氣象與負載預測作為空調整體系統性能最佳化控制,碩士論文,國立臺北科技大學能源與冷凍空調工程研究所,臺北,2011年。
[12] Hai-xiang Zhao and Frédéric Magoulès, “A review on the prediction of building energy consumption,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, 2012, pp. 3586-3592.
[13] Clarke JA, Energy Simulation in Building Design 2nd edition, Oxford: Butterworth-Heinemann, 2001, pp.1-63.
[14] McQuiston FC, Parker JD and Spitler JD, Heating, Ventilating and Air Conditioning Analysis and Design 6th edition, USA: John Wiley & Sons, 2005, pp.6-23.
[15] ISO 13790:2007, Energy performance of buildings - Calculation of energy use for space heating and cooling, Geneva, ISO, 2007, pp ix-17.
[16] Building energy software tools directory: http://apps1.eere.energy.gov/buildings/tools_directory/
[17] Ivan Korolija, Ljiljana Marjanovic-Halburd, Yi Zhang and Victor I. Hanby, “UK office building archetypal model as methodological approach in development of regression models for predicting building energy consumption from heating and cooling demands,” Energy and Buildings, vol. 60, 2013, pp. 152-162.
[18] Crawley DB, Hand JW, Kummert M and Griffith BT, “Contrasting the capabilities of building energy performance simulation programs,” Building and Environment, vol. 43, no. 4, 2008, pp. 661–673.
[19] Cho S-H, Kim W-T, Tae C-S and Zaheeruddin M, “Effect of length of measurement period on accuracy of predicted annual heating energy consumption of buildings,” Energy Conversion and Management, vol. 45, no. 18-19, 2004, pp. 2867–2878.
[20] Ma Y, Qi Yu J, Ye Yang C and Wang L, “Study on power energy consumption model for large-scale public building,” Proceedings of the 2nd international workshop on intelligent systems and applications, Wuhan, China, 2010, pp. 1–4.
[21] Newsham GR and Birt BJ, “Building-level occupancy data to improve ARIMA-based electricity use forecasts,” Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-efficiency in building, New York, USA, 2010, pp. 13–18.
[22] Aydinalp-Koksal M and Ugursal VI, “Comparison of neural network, conditional demand analysis and engineering approaches for modeling end-use energy consumption in the residential sector.” Applied Energy, vol. 85, no. 4, 2008, pp. 271–296.
[23] 羅華強著,類神經網路–MATLAB的應用,臺北:高立圖書有限公司,2005,第1-9頁。
[24] Yokoyama R, Wakui T and Satake R, “Prediction of energy demands using neural network with model identification by global optimization,” Energy Conversion and Management, vol. 50, no. 2, 2009, 319–327.
[25] Azadeh A, Ghaderi S and Sohrabkhani S, “Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors,” Energy Conversion and Management, vol. 49, no. 8, 2008, pp. 2272–2278.
[26] Gouda MM, Danaher S and Underwood CP, “Application of an artificial neural network for modelling the thermal dynamics of a building’s space and its heating system,” Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences, vol. 8, no. 3, 2002, pp. 333–344.
[27] Neto AH and Fiorelli FAS, “Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption,” Energy and Buildings, vol. 40, no. 12, 2008, pp. 2169–2176.
[28] Dong B, Cao C and Lee SE, “Applying support vector machines to predict building energy consumption in tropical region,” Energy and Buildings, vol. 37, no. 5, 2005, pp. 545–553.
[29] Li Q, Ren P and Meng Q, “Prediction model of annual energy consumption of residential buildings,” Proceedings of 2010 international conference on advances in energy engineering, Beijing, China, 2010, pp. 223–226.
[30] 溫坤禮、張簡士琨、葉鎮愷、王建文、林慧珊著,MATLAB在灰色系統理論的應用,臺北:全華圖書股份有限公司,2007,第1-1至1-6頁。
[31] Guo JJ, Wu JY and Wang RZ, “A new approach to energy consumption prediction of domestic heat pump water heater based on grey system theory,” Energy and Buildings, vol. 43, no. 6, 2011, pp. 1273–1279.
[32] Dhar A, Reddy TA and Claridge DE, “Modeling hourly energy use in commercial buildings with Fourier series functional form,” Journal of Solar Energy Engineering, vol. 120, 1998, pp. 217–223.
[33] Dhar A, Reddy TA and Claridge DE, “A Fourier series model to predict hourly heating and cooling energy use in commercial buildings with outdoor temperature as the only weather variable,” Journal of Solar Energy Engineering, vol. 121, 1999, pp. 47–53.
[34] Wikipedia: http://en.wikipedia.org/wiki/Fourier_transform
[35] 飛思科技產品研發中心,MATLAB7輔助信號處理技術與應用,北京:電子工業出版社,2005,第82-99頁。
[36] Building Energy Use and Cost Analysis Software: http://www.doe2.com/
論文全文使用權限:同意授權於2013-07-16起公開