現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:運用CFD數值方法於引擎進氣渦流設計 [以論文名稱查詢館藏系統]
論文英文名稱:Engine Intake Port Design for Swirling Flow by Using CFD Numerical Method [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:車輛工程系所
出版年度:97
中文姓名:廖俊性
英文姓名:Jun-Xing Liao
研究生學號:95448012
學位類別:碩士
語文別:中文
口試日期:2008-07-31
論文頁數:80
指導教授中文名:吳浴沂
指導教授英文名:Yuh-Yih Wu
口試委員中文名:林士賢;黃國修
口試委員英文名:Shyh-Shyan Sam Lin;Guo-Xiu Huang
中文關鍵詞:計算流體力學紊流模型流量係數渦旋比
英文關鍵詞:Computational fluid dynamicsTurbulence modelFlow coefficientSwirl ratio
論文中文摘要:本研究在於藉由引擎進氣道幾何的設計,以產生強烈的進氣渦流。運用計算流體力學之商用軟體-FLUENT,採用 紊流模型計算穩態單缸四汽門機車引擎進氣道流場,模擬引擎在流量測試平台的真實情況,研究方法是直接使用引擎設計時的3D CAD檔案進行分析,最後並將計算出的流量係數(Flow coefficient, )及渦旋比(Swirl ratio, )與實驗值作一比較;結果發現原廠氣道雙閥開啟案例中,在進氣閥開度小的時候預測相當準確,誤差百分比為1.14%;而原廠氣道單閥開啟案例是由關閉右側進氣門的方式,使氣流導引至汽缸的切線方向產生渦流以計算渦旋比,其結果顯示在氣門開度大時運用高階離散法可獲得良好之準確度,其整體平均渦旋比為2.041,相對誤差百分比僅為0.443%;然後利用氣道形狀的幾何修改,設計一弧線角度改變氣流的運動方向,使以達到引擎進氣渦流設計的目的,其結果顯示相較於原廠氣道單閥開啟得到更強烈的進氣渦流,其整體平均渦旋比為3.784。
論文英文摘要:This paper focuses on the design of engine intake port geometry, in order to generate strong charge swirling flow. Using computational fluid dynamics commercial software-FLUENT, adopt turbulence model to calculate intake flow field of a single cylinder four-valve motorcycle engine in steady state. To simulate the real condition that engine intake flow test by flow bench. The method is to analyze 3D CAD file directly while engine design. Finally, compare the flow coefficient and the swirl ratio value with experiment data. The result of twin-valve opening of original intake port case displays an accurate prediction while low valve lift and the error is 1.14%. The other one original case by closing right-hand intake valve makes air flow to cylinder tangentially. It will generate swirl then calculate the swirl ratio. The result displays a good accuracy by using high order discrete scheme while wide valve lifts, and the average swirl ratio is 2.041. The error is only 0.443%. Then modify the intake port geometry, design a curve angle to change air flow direction. To achieve the target of engine intake swirling flow design. The result gets stronger swirling flow than second one. The average swirl ratio is 3.784.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 5
1.3 研究目的與方法 12
第二章 基本理論 14
2.1 統御方程式 14
2.2 紊流模型 15
第三章 數值方法 18
3.1 數值模擬 18
3.1.1 前處理器 18
3.1.2 數值求解器 20
3.1.3 後處理器 21
3.2 研究假設條件 22
3.3 幾何外型及邊界條件設定 23
3.4 格點獨立分析 29
3.5 離散方法比較 30
3.6 收斂條件與鬆弛因子 31
第四章 實驗設備與方法 33
4.1 實驗設備與裝置 33
4.1.1 流量測試台 33
4.1.2 渦流量測儀 35
4.1.3 實驗引擎 35
4.1.4 大氣壓力計 36
4.2 實驗方法 37
第五章 實驗及模擬之結果與討論 41
5.1 流量測試實驗量測結果 41
5.1.1 雙氣閥開啟實驗結果 41
5.1.2 單氣閥開啟實驗結果 42
5.2 CFD流場模擬結果分析 44
5.2.1 原廠氣道雙氣閥開啟模擬結果 44
5.2.2 原廠氣道單氣閥開啟模擬結果 50
5.2.3 切向螺旋氣道模擬結果 56
第六章 結論與未來展望 62
6.1 結論 62
6.2 未來展望 63
參考文獻 64
符號彙編 68
著作發表 70
論文參考文獻:[1] http://tw.news.yahoo.com/article/url/d/a/080718/1/13h29.html
[2] Zhao, F., Lai, M.-C., Harrington, D.L., 1999, “Automotive spark-ignited direct-injection gasoline engines,” Progress in Energy and Combustion Science 25 (1999) 437–562.
[3] 環保署空氣品質保護及噪音管制處,“低污染車輛推廣”,http://www.epa.gov.tw/F/
[4] Badami, M., Marzano, M.R., Millo, F., Nuccio, P., 1999, “Comparison between direct and indirect fuel injection in an S I two-stroke engine,” SAE Paper No. 1999-01-3311.
[5] Laimböck, F.J., Klasnic, H., Grilc, S., Meister, G.F. and Dorfstätter, M.J., 1999, “AVL SDIS Mk.II Low-cost automotive F1 applied to 2-stroke engines for future CARB Regulations,” SAE Paper No. 1999-01-3285.
[6] Tanuma, T., Sasaki, K., Kaneko, T., and Kawasaki, H., “Ignition, Combustion, and Exhaust Emissions of Lean Mixtures in Automotive Spasrk Ignition Engines,” SAE Paoer 710159, (1971).
[7] Quade, A. A., “What Limits Lean Operation in Spark Ignition Engines - Flame Initiation or Propagation?” SAE Paoer 760760, (1976).
[8] Geoff, J., et al., “Lean Combustion in Spark-Ignited Internal Combustion Engines - A Review,” SAE Paoer 831694, (1983).
[9] Matsushita, S., et al., “Development of the Toyota Lean Combustion System,” SAE Paoer 850044, (1985).
[10] Inou, T, Matsushita, S, Nakanishi, K, and Okano, H., “Toyota Lean Combustion system - The Third Generation System,” SAE Paoer 930873, (1993).
[11] Nagayama, I., et al., “Effects of Swirl and Squish on S.I. Engine Combustion and Emission,” SAE Paoer 770217, (1977).
[12] Blaire, R. C., et al., “Combustion Chamber Effects on Burn Rates in a High Swirl Spark Ignition Engine,” SAE Paoer 830335, (1983).
[13] Matsushita, S., et al., “Effects of Helical Port with Swirl Copntrol Valve on the Combustion and Performance of S. I. Engine,” SAE Paoer 850046, (1985).
[14] Alperstain, M., Schafer, G. H., and Villforth III, F. J., “Taxaco's Stratified Charge Engine - Multifuel, Efficient, Clean, and Practical,” SAE Paoer 740563, (1974).
[15] Nakayama, Y., Maruya, T., Oikawa, T., and Fujiwara, M., “Reduction of HC Emission from VTEC Engine During Cold-Start Condition,” SAE Paoer 940481, (1994).
[16] Kent, J. C., Mikulec, A., Rimal, L., Adamczyk, A. A., Mueller, S. R., Stein, R. A., and Warren, C. C., “Observations on the Effects of Intake-Generated Swirl and Tumble on Combustion Duration,” SAE Trasaction, vol. 98, pp. 2042-2053, SAE 892096, (1989).
[17] Omori, S., Iwachido, K., Motomochi, M., and Hirako, O., “Effect of Intake Port Flow Pattern on the In-Cylinder Tumbling Air Flow in Multi-Valve S.I. Engines,” SAE Paper 910477, (1991).
[18] Endres, H., Neusser, H. J., and Wurms, R., “Influence of Swirl and Tumble on Economy and Emissions of Multi Valve S.I. Engine,” SAE paper 920516, (1992).
[19] Wilson, N. D., Watkins, A. J., and Dopson, C., “Asymmetric Valve Strategies and Their Effect on Combustion,” SAE Paper 930821, (1993).
[20] Heywood, J.B., “Internal Combustion Engine Fundamentals,” pp.183-186, New York: McGraw-Hill, 1988.
[21] Namazian, M., Hansen, S., Lyford-Pike, E., Sanchez-Barsse, J., Heywood, J. B., and Rife, J., "Schlieren Visualization of the Flow and Density Fields in the Cylinder of a Spark Ignition Engine,” SAE Paoer 840044, (1984).
[22] Daneshyar, H., and Hill, P. G., “The Structual of Small-Scale Turbulence and Its Effect on Combustion in Spark Ignition Engines,” Prog. Energy Combust. Sci., vol. 13, pp. 47-73 (1987).
[23] Wilson, N. D., Watkins, A. J., and Dopson, C., “Asymmetric Valve Strategies and Their Effect on Combustion,” SAE Paper 930821, (1993).
[24] Kent, J. C., Mikulec, A., Rimal, L., Adamczyk, A. A., Mueller, S. R., Stein, R. A., and Warren, C. C., “Observations on the Effects of Intake-Generated Swirl and Tumble on Combustion Duration,” SAE Trasaction, vol. 98, pp. 2042-2053, SAE 892096, (1989).
[25] Raja, A. V. et al., “Effect of Intensified Swirl and Squish on the Performance of a Lean Burn Engine Operated on LPG” SAE Paper 2000-01-1951. (2000).
[26] McGee, J., Curtis, E., Russ, S., and Lavoie, G., 2000, “The effects of port fuel injection timing and targeting on fuel preparation relative to a pre-vaporized system,” SAE Paper No. 2000-01-2834.
[27] Queenan, B., Nightingale, C., and Bennett, J., 1997, “Charge stratification in a 4-valve SI engine through injection into one intake port with induced axial swirl within the cylinder,” SAE Paper No. 972875.
[28] Jeong, K.S., Ohm, Y., Yoon, Y., Jeung, I.S., 1998, “Initial Flame Development under Fuel Stratified Conditions,” SAE Paper No. 981429.
[29] Ohm, I.Y., and Cho, Y.S., 2000, “Fuel Stratification Process in the Cylinder of an Axially Stratified Engine,” SAE Paper No. 2000-01-2842.
[30] Ohm, I.Y., and Cho, Y.S., 2000, “Mechanism of Axial Stratification and Its Effect in an SI Engine,” SAE Paper No. 2000-01-2843.
[31] 吳浴沂、陳柏全,2005,「機車引擎稀薄燃燒可行性研究計畫結案報告」,光陽工業股份有限公司委託研究計畫。
[32] Wu, Y. Y. et al., “Emission Control of Four-Stroke Motorcycle Engine,” SAE Paper 950176. (1995).
[33] Laimboeck, F. J. et al., “AVL Lean Burn Systems CCBR and CBR Light for Fuel Economy and Emission Optimization on 4-Stroke Engines,” SAE Paper 2002-32-1778. (2002).
[34] Kim, D.S., Yoo, Y.J., Cho, Y.S., and Ohm, I.Y., “Numerical Analysis of Flow Characteristics for Intake Valve Design,” SAE paper 2003-01-2015.
[35] McLandress, A.S., Emerson, R.G., McDowell, P.D., and Rutland, C.J., “Intake and In-Cylinder Flow Modeling Characterization of Mixing and Comparison with Flow Bench Results,“ SAE 960635.
[36] Godrie, P., and Zellat, M., "Simulation of Flow Field Generated by Intake Port-Valve-Cylinder Configurations- Comparison with Measurements and Applications," SAE Paper 940521
[37] Versteeg, H. K., and Malalasekera, W., An Introduction to Computational Fluid Dynamics – The Finite Volume Method, Longman Group, 1995, pp.1-84
[38] 王漢英,機車動力系統設計技術手冊:財團法人工業技術研究院,民國80年9月。
[39] Airflow basics, Service procedure, Superflow technologies group.
[40] FLUENT Use’r Guide, version 6.3.26
論文全文使用權限:同意授權於2008-08-27起公開