現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:燒結製程對卑金屬Y5V積層陶瓷電容之特性研究 [以論文名稱查詢館藏系統]
論文英文名稱:Effects of Sintering Process on the Dielectric Properties of BME-Y5V-MLCCs [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料及資源工程系研究所
畢業學年度:97
出版年度:98
中文姓名:李昱昕
英文姓名:Yu-Hsin Lee
研究生學號:96788015
學位類別:碩士
語文別:中文
口試日期:2009-07-03
論文頁數:108
指導教授中文名:吳玉娟;王錫福
指導教授英文名:Yu-Chuan Wu;Sea-Fue Wang
口試委員中文名:王玉瑞;林永仁;陳志榮
中文關鍵詞:MLCCY5VBa2TiSi2O8液相燒結
英文關鍵詞:MLCCY5VBa2TiSi2O8Liquid phase sintering
論文中文摘要:利用刮刀成型製程製作MLCC技術日趨成熟,且市場需求朝向小型化、高電容值的方向,因此高層數與低薄帶厚度之MLCC正在積極研究發展中。然而,貴金屬製程之高層數MLCC,電極成本耗費極大,為因應此成本花費,發展了使用鎳銅電極取代銀鈀電極系統之卑金屬製程,但由於鎳內電極於空氣中燒結時造成氧化,使電容值下降,故此製程必須在還原氣氛中燒結。
本研究藉由改變燒結製程溫度與時間參數,觀察其對Y5V卑金屬積層陶瓷電容特性之影響,經過TCC(Temperature Coefficient of Capacitance)檢測,可發現在燒結溫度1223oC以上或燒結時間2小時以上,TCC呈現平坦化。且經計算MLCC介電層晶粒尺寸後可發現,未網印電極塊材較25層MLCC或125層MLCC晶粒尺寸為大。由XRD與SEM微結構分析發現有二次相Ba2TiSi2O8生成和液相燒結現象,並進一步證實其二次相生成之反應機制。而藉由將電極鎳粉和介電粉混合,進行熱分析檢測,發現加入電極鎳粉使起始收縮曲線往低溫移動。此外,鎳電極經廠商燒結製程後,由XRD檢測發現氧化鎳成分,推測其為再氧化時產生。
論文英文摘要:The technology of MLCCs fabricated by tape casting process had become mature. Most MLCCs were made toward smaller size and higher capacitance for market demand. In the result, more layer numbers and lower tape thickness of MLCCs were developed activity. Noble metal electrode (NME) using Ag-Pd metals cost more than base metal electrode (BME) using Cu-Ni metals, but BME-MLCCs had lower capacitance due to inner electrode-nickel oxided easily in high temperature. BME-MLCCs must be fired in reducing atmosphere to prevent the oxidation of nickel .
This research focused on effects of BME-Y5V-MLCCs by changing sintering process. A flat curve was invesgated on the temperature of coefficient capacitance (TCC) as sintering temperature was higher (above 1223oC) or soaking time was longer (over 2h) at 1220oC. After grain sizes of ceramics in MLCC calculated, we found grain size in multi-layer ceramic bulk was larger than MLCCs. Second phase Ba2TiSi2O8 and liquid phase sintering invesgated in XRD data and SEM image. We also found the chemical mechanism of second phase and liquid phase. According to the result of dilatometer examination, the initial shrinkage temperature of nickel electode mixed with Y5V ceramic powder was lower than raw Y5V ceramic powder. The nickel oxide peaks were found in the XRD data. It’s should be produced in the re-oxidation stage of sintering process.
論文目次:摘要 i
ABSTRACT ii
誌謝 iv
目 錄 v
表目錄 ix
圖目錄 x
第一章 前言 1
1.1積層陶瓷電容概述 1
1.2 積層陶瓷電容之分類與BME製程 2
1.3 研究目的 3
第二章 理論基礎與文獻回顧 4
2.1 鈦酸鋇結構與介電特性 4
2.2 Y5V介電材相關特性之理論基礎 6
2.2.1 居里點(TC)之判定 6
2.2.2 擴散相變化(Diffusion Phase Transition) 6
2.2.3 弛緩體(Relaxor) 7
2.3 各種變數對電容用Y5V鈦酸鋇特性之影響 8
2.3.1 電容用Y5V規範介電材料 8
2.3.2 晶粒尺寸 8
2.3.3 添加物對Y5V介電材之影響 10
2.3.3.1 添加氧化鋯(ZrO2)對Y5V介電材之影響 10
2.3.3.2 添加氧化鈣(CaO)元素對Y5V介電材之影響 11
2.3.3.3 添加矽酸鹽對Y5V介電材之影響 12
2.3.3.4 添加氧化鎂(MgO)對Y5V介電材之影響 13
2.2.4 鈦酸鋇與二氧化矽間化學反應 15
2.2.5 Ba/Ti 比例 16
2.2.6燒結氣氛與溫度 17
2.4 BME-MLCCS相關研究 19
2.4.1 內電極鎳層相關研究 19
2.4.2 MLCC應力分析 20
2.4.3 鎳電極與鈦酸鋇介電材作用之研究 21
第三章 實驗步驟與分析方法 23
3.1 實驗藥品-Y5V介電陶瓷粉 23
3.2 鈦酸鋇與二氧化矽混合實驗藥品 23
3.3 實驗方法與製程 24
3.3.1 Y5V介電陶瓷塊材(Disks) 燒結前處理 24
3.3.2燒結溫度對Y5V介電陶瓷之影響 25
3.3.3燒結時間對Y5V介電陶瓷之影響 28
3.3.4不同再氧化條件對Y5V介電陶瓷之影響 29
3.3.5積層陶瓷塊材(Dummy)與積層陶瓷電容燒結前處理 30
3.3.6燒結溫度對Y5V積層陶瓷塊材與電容之影響 30
3.3.7燒結時間對Y5V積層陶瓷塊材與電容之影響 31
3.3.8不同再氧化條件對Y5V積層陶瓷塊材與電容之影響 31
3.3.9 Y5V介電陶瓷粉與Ni內電極粉之相互作用 32
3.3.10 MLCC中介電陶瓷與Ni內電極間之相互作用 32
3.3.11 鈦酸鋇與二氧化矽反應之化學作用 33
3.4 實驗使用儀器與操作條件 35
3.4.1 相對密度量測 35
3.4.2 粒徑量測 35
3.4.3 X光繞射儀(XRD)分析 35
3.4.4 掃描式電子顯微鏡分析(SEM) 36
3.4.5 熱重/熱差分析儀(TG/DTA) 36
3.4.6 熱膨脹分析儀(Dilatometer) 36
3.4.7 介電性質量測 36
3.4.8 晶粒尺寸量測 37
第四章 結果與討論 38
4.1 Y5V介電陶瓷粉燒結前粉末特性 38
4.2 Y5V介電陶瓷塊材介電性質與微結構 41
4.2.1探討燒結溫度對Y5V介電陶瓷之影響 41
4.2.1.1 體密度 41
4.2.1.2 XRD檢測-相鑑定 41
4.2.1.3 SEM微結構觀察 43
4.2.1.4 電性量測 45
4.2.2探討燒結時間對Y5V介電陶瓷之影響 49
4.2.2.1 體密度 49
4.2.2.2 XRD檢測-相鑑定 50
4.2.2.3 SEM微結構觀察 51
4.2.2.4 電性量測 54
4.2.3探討不同再氧化條件對Y5V介電陶瓷之影響 57
4.2.3.1 體密度 57
4.2.3.2 XRD檢測-相鑑定 57
4.2.3.3 SEM微結構觀察 58
4.2.3.4 電性量測 61
4.3 Y5V積層陶瓷塊材和電容之介電性質與微結構 62
4.3.1 探討燒結溫度和時間與再氧化條件對積層塊材與電容之影響 62
4.3.1.1 電性量測 62
4.3.1.2 SEM微結構觀察 75
4.4 Y5V介電陶瓷粉與NI內電極粉之相互作用 81
4.4.1加熱收縮曲線(DIL檢測) 81
4.4.2 DTA/TGA檢測 82
4.4.3 XRD檢測-相鑑定與結構分析 85
4.4.3.1空氣脫脂電極粉與介電粉混合 85
4.4.3.2還原氣氛(3%H2/N2)脫脂後電極粉與介電粉混合 87
4.5 MLCC中介電陶瓷與NI內電極間之相互作用 89
4.5.1加熱收縮曲線 89
4.5.2 XRD檢測-相鑑定 91
4.5.3 OM觀察 94
4.5.4 SEM觀察 94
4.5.4.1 脫脂後之鎳電極 94
4.5.4.2 脫脂後之MLCC生胚 95
4.5.4.3 燒結後之鎳電極 96
4.5.4.4 燒結後之MLCC 97
4.5.5 電性量測 98
4.6 鈦酸鋇與二氧化矽反應之化學作用 99
4.6.1 XRD檢測結果 99
第五章 結論 101
參考文獻 103
論文參考文獻:[1] B. Jaffee, W. R., Cook, H. Jaffee, Peizoelectric ceramics, Academic Press, N. Y, (1971).
[2] Z. X. Chen, C. G. Liu, “Theoretical investigation on BaTiO3 with periodic density functional theory BLYP method,” Chem. Phys., 270, 253-261. (2001).
[3] 吳朗,電子陶瓷-介電,初版,台北,全欣科技圖書 (1994)。
[4] H. Shizuno, S. Kusumi, H. Kishi “Properties of Y5V Multilayer Ceramic Capacitors with Nickel Electrodes,” Jpn. J. Appl Phys.,32, 4380-4383 (1993).
[5] H. Kishi, Y. Mizuno, and H. Chazono, “Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives,” Jpn. J. Appl. Phys., 42, 1-15 (2003).
[6] Y. Mizuno, K. Morita, T. Hagiwara, H. Kishi, K. Ohnuma, H. Ohsato, “Relationship between Microstructural Evolution and Electrical Properties in Ba(Ti, Zr)O3-Based Materials for Ni-MLCC ,” Jpn. J. Appl. Phys., 43[9B], 6640-6644 (2004).
[7] Q. Feng, C. J. McConville, D. D. Edwards, “Dielectric Properties and Microstructures of Ba(Ti,Zr)O3 Multilayer Ceramic Capacitors with Ni Electrodes,” J. Am. Ceram. Soc., 88[6], 1455-1460 (2005).
[8] D. Hennings, “Barium Titanate Based Ceramic Materials for Dielectric Use,” Int. J. High Tech. Ceram., 3, 91-111 (1987).
[9] X. Wang, H. Wen, R. Chen, H. Zhou, L. Li, “Size Effect of Barium Titanate Based Ceramics Sintered in Reducing Atmospheres,” 2004 IEEE International Ultrasonics, Ferroelectrics, 327 and Frequency Control Joint 50th Anniversary Conference, 324-327 (2004)
[10] Y. Mizuno, T. Hagiwara, H. Chazono, H. Kishi, “Effect of milling process on core-shell microstructure and electrical properties for BaTiO3-based Ni-MLCC”, J. Euro. Ceram. Soc. 21, 1649-1652 (2001).
[11] P. Hansen, D. Hennings, H. Schreinenacher “Dielectric Properties of Acceptor-Doped (Ba,Ca)(Ti,Zr)O3 Ceramics, ” J. Electroceramics, 2[2], 85-94 (1998).
[12] C. Hofer, R. Meyer, U. Bottger, R. Waser, “Characterization of Ba(Ti,Zr)O3 Ceramics Sintered under Reducing Conditions,” J. Europ. Ceram. Soc., 24., 1473-1477 (2004).
[13] Z. Y, C. Ang, R. Guo, A.S. Bhalla, “Dielectric properties of Ba(Ti1-X Zrx)O3 solid solutions,” Mater. Letters., 61, 326-329 (2007).
[14] V. Kumar, I. P. Selvam, K. Jithesh, P. V. Divya “Preparation and dielectric characteristics of nanocrystalline Ba(MxTi1-x)O3,” J. Phys. D:Appl. Phys. 40, 2936-2940 (2007).
[15] N. Sawangwan, J. Baeerl, K. Mackenzie, T. tunkasiri, “The effect of Zr content on electrical properties of Ba(Ti1-xZrx)O3 electric ceramics,” Appl. Phys. A, 90, 723-727 (2008).
[16] T. Maiti, R. Guo, A. S. Bhalla., “Structure-Property Phase Diagram of BaZrxTi1-xO3 System,” J. Am. Ceram. Soc., 91[6], 1769-1780 (2008).
[17] D. F. K. Hennings, H. Schreinemacher, “Ca-acceptors in Dielectric Ceramics Sintered in Reductive Atomospheres,” J. Europ. Ceram. Soc., 15, 795-800 (1995).
[18] A. Osonoi, S. Tashiro, H. Igarashi, “Effect of A-site substitution and firing temperature on microstructure and electrical properties of BaTiO3 semiconducting ceramics fired by reduction-reoxidation method,” Jpn. J. Appl. Phys., 36, 6021-6026 (1997).
[19] T. Fa, C. T. Hu, “Influence of CaO addition on the electrical properties of BaTiO3 ceramics,” J. Appl. Phys., 67, 1042-1047 (1990).
[20] J. N. Lin, T. B. Wu, “Effects of isovalent substitutions on lattice softening and transition character of BaTiO3 solid solutions” J. Appl. Phys., 68, 985-993 (1990).
[21] H. Niimi, K. Mihara, Y. Sakabe. “Influence of Ba-Ti Ratio on the Positive Temperature Coefficient of Resistivity Characteristics of Ca-Doped Semiconducting BaTiO3 Fired in Reducing Atmosphere and Reoxidized in Air,” J. Am. Ceram. Soc., 90[6], 1817-1821 (2007).
[22] 陳皇鈞譯,陶瓷材料概論(上),台北:曉元出版社有限公司,1988,第466-474頁。
[23] J. Weiss, G. Rosenstein, “Addition of Ba2TiSi2O8 to manganese-doped barium titanate:effect on oxygen diffusion and grain-boundary composition,” J. Mater. Sci., 23, 3263-3271 (1988).
[24] B. Rangarajan, B. Jones, T. Shrout, M. Lanagan, “Barium/Lead-Rich High Permittivity Glass-Ceramics for Capacitor Applications,” J. Am. Ceram. Soc., 90[3], 784-788 (2007).
[25] T. Nagai, K. Iijima, H. J. Hwang, M. Sanda, T. Sekino and K.Niihara, “Effect of MgO Doping on the Phase Transformations of BaTiO3,” J. Am. Ceram. Soc., 83[1], 107–112 (2000).
[26] P. Hansen, D. Hennings, H. Schreinemacher, “High-K Dielectric Ceramics from Donor/Acceptor-Codoped(Ba1−xCax)(Ti1−yZry)O3 (BCTZ),” J. Am. Ceram. Soc., 81[5], 1369-1373 (1998).
[27] Rase. D. E., Roy. R., “Phase equilibria in the system BaTiO3–SiO2,”J. Am. Ceram. Soc., 38, 389-395 (1955)
[28] K. H. Felgner, T. Müller, H. T. Langhammer, H. P. Abichi, ”Investigations on the liquid phase in barium titanate ceramics with silica additives,” J. Eur. Ceram. Soc., 21, 1657-1660 (2001).
[29] S. Xiao, X. Yan, “Preparation and characterization of Si-doped barium titanate nanopowders and ceramics,” Microelectron. Eng. 86, 387-391 (2009).
[30] J. D. Murray, “Some causes and effects of phases other than tetragonal BaTiO3 in barium titanate,” Am. Ceram. Soc. Bull., 37, 476-479 (1958).
[31] A. Beauger, J. C. Mutin, J. C. Niepce, “Role and behaviour of orthotitanate Ba2TiO4 during the processing of BaTiO3 based ferroelectric ceramics,” J. Mater. Sci., 19, 195-201 (1984).
[32] S. Lee, C. A. Randall, Z. K. Liu, “Comprehensive Linkage of Defect and Phase Equilibria Through Ferroelectric Transition Behavior in BaTiO3-Based Dielectrics: Part 2. Defect Modeling Under Low Oxygen Partial Pressure Conditions,” J. Am. Ceram. Soc., 91[6], 1753-1761 (2008).
[33] D. F. K. Hennings, “Dielectric materials for sintering in reducing atmospheres,” J. Europ. Ceram. Soc., 21, 1637-1642 (2001).
[34] Y. I. Jung, S. Y. Choi, S. J. L. Kang, “Grain-Growth Behavior during Stepwise Sintering of Barium Titanate in Hydrogen Gas and Air,” J. Am. Ceram. Soc., 86[12], 2228-2230 (2003).
[35] M. R. Optiz, K. Albertsen, J. J. Beesen, D. F. Hennings, J. L. Routbort, C. A. Randall, “Kinetic Process of Reoxidation of Base Metal Technology BaTiO 3-Based Multilayer Capacitors,” J. Am. Ceram. Soc., 86[11], 1879-1884 (2003).
[36] K. Albertsen, “Re-oxidation of Ni-MLCs,” J. Eur. Ceram. Soc., 24, 1883-1887 (2004).
[37] A. V. Polotai, G. Y. Yang, E. C. Dickey, C. A. Randall, “Utilization of multiple-stage sintering to control Ni electrode continuity in ultrathin Ni-BaTiO3 multilayer capacitors,” J. Am. Ceram. Soc., 90[12], 3811-3817 (2007).
[38] Y. Nakako, T. Nomura, T. Takenaka, “Number of Dielectric Layers Depenence of Dielectric Properties and Residual Stress of Multilayer Ceramic Capacitors with Ni Electrdes,” Jpn. J. Appl. Phys., 43[ 8A], 5398-5403 (2004).
[39] J. M. J. D. Toonder, C. W. Rademaker, C. L. Hu, “Residual Stresses in Multilayer Ceramic Capacitors: Measurement and Computation.” J. Electron. Packag. 125, 506-511 (2003).
[40] Y. I. Shin, K. M. Kang, Y. G. Jung, J. G. Yeo, S. G. Lee, U. Paik, “Internal stresses in BaTiO3/Ni MLCCs,” J. Eur. Ceram. Soc., 23, 1427-1434 (2003).
[41] H. Shin, J. S. Park, S. Kim, H. S. Jung, K. S. Hong, “Investigation of useful or deleterious residual thermal stress component to the capacitance of a multilayer ceramic capacitor,” Microelectron. Eng., 77, 270-276 (2005).
[42] J. S. Park, S. K. Kim, H. Shin, H. S. Jung, K. S. Hong, “Residual Stress evolution in multilayer ceramic capacitors corresponding to layer increase and its correlation to the dielectric constant,” J. Appl. Phys., 97, 094504 (2005).
[43] W. G. Jiang, X. Q. Feng, C. Nab, ” A three-dimensional theoretical model for estimating the thermal residual stresses in micro multilayer ceramic capacitors,” Compos. Sci. Technol., 68, 692-698 (2008).
[44] W. G. Jiang, X. Q. Feng, G.Yang, Z. X. Yue, C. W. Nan, “Influence of thickness and number of dielectric layers on residual stresses in micromultilayer ceramic capacitors,” J. Appl. Phys., 101, 104117 (2007).
[45] Y. C. Huang, W. H. Tuan, “Solubility of Ni in BaTiO3 during co-firing,” J. Electroceram., 18, 183-188 (2007).
[46] N. Setter, L. E. Cross, “The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics,” J. Appl. Phys.,.51[8], 4356-4360 (1980).
[47] G. A. Smolenskii, A. I. Agranovskaya, V. A. Isupov, “New ferroelectrics of complex compound,” Sov. Phys. Solid State., 1, 907-908 (1959).
[48] D. Hennings, R. Rosenstein, “Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3,” J. Am. Ceram. Soc., 67[4], 249-254 (1984).
[49] H. Y. Lu, J. S. Bow, W. H. Deng, “Core-shell structure in ZrO2-modified BaTiO3 ceramics,” J. Am. Ceram. Soc., 73[12], 3562-3568 (1990).
[50] H. T. Martirena, J. C. Burfot, “Grain-size effects on properties of some ferroelectric ceramics,” J. Phys., c7, 3182-3192 (1974).
[51] P. Murugaraj, T. N. Kutty, M. S. Rao, “Diffusion phase transformation in neodymium-doped BaTiO3 ceramics,” J. Mater. Sci., 21, 3521-3527 (1986).
[52] L. Benguigui, K. Bethe, “Diffused phase transition in BaxSr1-xTiO3 single crystal,”J. Appl. Phys., 47[ 7], 2787-2791 (1976).
[53] M. I. Medelson., “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc., 52[8], 443-446 (1969).
[54] Y. I. Jung, S. Y. Choi, S. J. L. Kang, “Grain-Growth Behavior during Stepwise Sintering of Barium Titanate in Hydrogen Gas and Air” J. Am. Ceram. Soc., 86,[12], 2228-2230 (2003).
[55] S. T. Kuo, W. H. Tuan, Y. W. Lao, C. K Wen, H. R. Chen, “Grain Growth Behavior of Bi2O3-Doped ZnO Grains in a Multilayer Varistor” J. Am. Ceram. Soc., 91[5], 1572-1579 (2008).
[56] 林詠強,束縛燒結的機制與應力研究,碩士論文,國立清華大學材料科學工程學系,新竹,2000.
[57] C. L. Shen, W. H. Lee, W. C. Wei, “Sintering Behavior and Interfacial Analysis of Ni/Cu Electrode with BaTiO3 Particulates,” J. Electroceram., 14, 25-36 (2004).
[58] K. Nishida, H. Kishi, H. Funakubo, H. Takenshi, T. Katoda, T. Yamamoto, “Evalution of Residual Strain and Oxygen Vacancy in Multilayer Ceramic Capacitor Using Laser Raman Spectroscopy,” Jap. J. Appl. Phys., 46[10B], 7005-7007 (2007).
[59] S. Qiu, C. Gao, X. Zheng, X.Gan, C. Yang, J. Chen, P. Fang, H. Fan, “Grain growth in sintered porous Pb(Zr0.95Ti0.05)O3 ceramics,” Solid State Ionics, 179, 875-877(2008).
[60] Y. Hotta, C. Duran, K. Sato, T. Nagaoka, K. Watari., “Densification and grain growth in BaTiO3 ceramics fabricated from nanopowders synthesized by ball-milling assisted hydrothermal reaction,” J. Europ. Ceram. Soc., 28[3], 599-604(2007).
論文全文使用權限:不同意授權