現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:抗還原X9R介電陶瓷微結構及性質研究 [以論文名稱查詢館藏系統]
論文英文名稱:Microstructure and Dielectric Properties of Non-reducible High-Temperature Stable X9R Ceramics [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料及資源工程系研究所
畢業學年度:101
出版年度:101
中文姓名:李建樺
英文姓名:Jian-Hua Li
研究生學號:99788020
學位類別:碩士
語文別:中文
口試日期:2012-07-11
論文頁數:75
指導教授中文名:王錫福
口試委員中文名:徐永富;吳玉娟;段維新;林永仁
中文關鍵詞:鈦酸鋇X9R積層陶瓷電容複合介電陶瓷碳酸鋰氧化鉭
英文關鍵詞:BaTiO3X9R materialsMLCCsLi2CO3Ta2O5
論文中文摘要:本研究是利用複合材料之觀點作為介電材料設計以及研究其介電性質,以不同居禮點之介電材料混合達到介電性質相互補償,抑制鐵電材料在居禮點的介電峰以達到穩定其介電曲線。本研究使用之介電材料為BaTiO3,經由添加等莫爾比Li2CO3及Ta2O5後,於高溫燒結形成複合介電陶瓷體。隨著Li2CO3及Ta2O5添加量增加可有效的抑制介電性質對溫度之曲線,以及降低介電損失,當添加量每增加5 mol%可提高應用溫度-55oC之電容溫度係數(Temperature Coefficient of Capacitance, TCC)約3%,及200oC之TCC可提高約6 ~ 8%,但介電常數降低約150 ~ 300。當添加量在25 mol%以上可符合電子工業協會(Electronic Industries Association, EIA)標準中X9R規格(應用溫度範圍-55oC ~ 200oC,電容溫度係數ΔC/C ≦ ±15%)。(1-x)BT-(x/2)Li2CO3-(x/2)Ta2O5複合介電陶瓷材料擁有良好之絕緣性,在室溫下電阻係數可達1013 Ω-cm,高溫200oC時的電阻係數也維持著1012 Ω-cm。
論文英文摘要:In this research, a design of the dielectric material and its dielectric properties were studied in a composite materials view. By mixing dielectric materials with different Curie point, the Curie peaks of ferroelectric materials at the Curie point were inhibited to achieve stable dielectric curves. In this study, the raw material barium titanate (BaTiO3) was sintered with a same molar ratio of Li2CO3 and Ta2O5 at high temperature for 2 hours. With the addition amount of Li2CO3 and Ta2O5 increased, the sensitivity of dielectric property to temperature decreased, and reduced dielectric loss. With each additional 5 mol%, the Temperature Coefficient of Capacitance (TCC) would increased about 3% at -55oC, and increased 6~8% at 200oC. But the dielectric constant decreased about 150~300. When the additive reach more than 25 mol%, this capacitor could satisfy X9R specifications of the Electronics Industry Association (EIA) standard, namely an operating temperature range of the capacitor is between -55 to 200°C, and with TCC shift limited to 15%.((1-x)BT-(x/2)Li2CO3-(x/2)Ta2O5 ) is good insulator, the resistivity up to 1013 Ω-cm at room temperature ,and resistivity in the high temperature 200°C to maintain 1012 Ω-cm.
論文目次:摘 要 i
ABSTRACT ii
致 謝 iv
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1前言 1
1.2 研究目的 3
第二章 基礎理論及文獻回顧 4
2.1介電陶瓷配方研發概述 4
2.2 X7R介電陶瓷研發 8
2.3 X8R介電陶瓷研發 13
2.4 X9R介電陶瓷研發 17
第三章 實驗流程與量測 21
3.1 實驗藥品規格 21
3.1.1 商用鈦酸鋇 22
3.2 實驗流程 23
3.2.1 燒結體的製備 23
3.2.2 電性量測試片的製備 24
3.3 材料性質分析及檢測儀器規格 25
3.3.1 X光繞射分析 25
3.3.2 顯微結構觀察 25
3.3.3 電子微探分析儀(EPMA)組成分析 25
3.3.4 體密度量測 26
3.3.5 電性量測 26
第四章 結果與討論 28
4.1煆燒後粉末晶相結構分析 28
4.2 燒結緻密化行為 30
4.3 再氧化熱處理 32
4.4 燒結體晶相結構分析 34
4.4.1 0.9BT0.1LT晶相結構 34
4.4.2 0.85BT0.15LT晶相結構 36
4.4.3 0.8BT0.2LT晶相結構 37
4.4.4 0.75BT0.25LT晶相結構 38
4.4.5 0.73BT0.27LT晶相結構 39
4.4.6 0.7BT0.3LT晶相結構 41
4.4.7 0.65BT0.35LT晶相結構 42
4.4.8 (1-x)BaTiO3–(x/2)Li2CO3–(x/2)Ta2O5晶相結構趨勢 42
4.5 燒結體顯微組織 44
4.5.1 0.9BT0.1LT顯微組織 44
4.5.1.1 0.9BT0.1LT表面顯微組織 44
4.5.1.2 0.9BT0.1LT研磨後顯微組織 47
4.5.2 0.85BT0.15LT顯微組織 48
4.5.2.1 0.85BT0.15LT表面顯微組織 48
4.5.2.2 0.85BT0.15LT研磨後顯微組織 51
4.5.3 0.8BT0.2LT顯微組織 52
4.5.3.1 0.8BT0.2LT表面顯微組織 52
4.5.3.2 0.8BT0.2LT研磨後顯微組織 53
4.5.4 0.75BT0.25LT至0.65BT0.35LT顯微組織 54
4.5.4.1 0.75BT0.25LT至0.65BT0.35LT表面顯微組織 54
4.5.4.2 0.75BT0.25LT至0.65BT0.35LT研磨後顯微組織 56
4.6 介電性質 59
4.6.1 0.9BT0.1LT及0.85BT0.15LT的介電性質 60
4.6.2 0.8BT0.2LT的介電性質 61
4.6.3 (1-x)BT–(x/2)Li2CO3–(x/2)Ta2O5 (x=0.25、0.27及0.3) 的介電性質 63
4.6.4 0.65BT0.35LT的介電性質 64
4.6.5 (1-x)BT–(x/2)Li2CO3–(x/2)Ta2O5介電性質成份趨勢 66
4.6.6 (1-x)BT–(x/2)Li2CO3–(x/2)Ta2O5絕緣電阻特性 68
第五章 結論 69
參考文獻 71
論文參考文獻:[1] 謝宗諭,額外添加Ba2+於(Ba,Ca)(Ti,Zr)O3系統的顯微結構、晶體結構及介電性質,碩士論文,國立成功大學資源工程研究所,台南, 2010年。
[2] B. Jaffe, W. R. Cook Jr., and H. Jaffe, Piezoelectric Ceramics, Academic Press, London (1971).
[3] N. Wada, and T. Hiramatsu, “Investigation of grain boundaries influence on dielectric properties in fine-grained BaTiO3 ceramics without the core–shell structure, ” Ceramic International, 34, pp. 933-937, (2008).
[4] I. Burn, “Mn-doped polycrystalline BaTiO3, ” Journal of Materials Science, 14, pp. 2453-2458, (1979).
[5] S. Sumita, M. Ikeda, Y. Nakano, K. Nishiyama, and T. Nomura, “Degradation of Multilayer Ceramic Capacitors with Nickel Electrodes,” Journal of the American Ceramic Society, 74, pp. 2739-2746, (1991).
[6] I. Burn, “Ceramic Disk Capacitor with Base-Metal Electrode,” Ceramic Bulletin, 57, pp. 600-604, (1978).
[7] Xiaowen Zhang, Ying Wang, and Longtu Li, “Study on the Defect Chemistry of Ca2+ as Acceptor Dopant in BaTiO3,” Second International Conference on Properties and Applications of Dielectric Materials, IEEE, vol. 1, pp. 186–188, (1988).
[8] Xiaowen Zhang, Ying Wang, and Longtu Li, “Study on the Anti-Reduction Properties of Mn-doped BaTiO3-Based Ceramics,” IEEE Transactions on Electrical Insulation, vol. 25, no. 3, pp. 587-592, (1990).
[9] Sheng Wang, Shuren Zhang, Xiaohua Zhou, Bo Li, Zhu Chen, “Effect of Sintering Atmospheres on the Microstructure and Dielectric properties of Yb/Mg co-doped BaTiO3 Ceramics,” Materials Letters, vol. 59, no. 5, pp. 2457–2460, (2005).
[10] Kum-jin Park, Chang-hoon Kima, Yeo-joo Yoon, Soon-mo Song, Young-tae Kim, and Kang-heon Hur, "Doping behaviors of dysprosium, yttrium and holmium inBaTiO3 ceramics," Journal of the European Ceramic Society, vol. 29, pp. 1735–1741, (2009).
[11] Shunhua Wu, Shuang Wang, Liying Chen, and Xiaoyong Wang, "Effect of Mn substitutions on dielectric properties of high dielectric constant BaTiO3-based ceramic," Journal of Materials Science: Mater Electron, vol. 19, no. 6, pp. 505–508, (2008).
[12] Yan-xia Li, Xi Yao, Xu-sheng Wang, and Liang-ying Zhang, "Studies of Resistivity and Dielectric Properties of Manganese-Doped Barium Titanate Sintered in Pure Nitrogen," Ferroelectrics, vol. 384, pp. 73–78, (2009).
[13] Pengfei Yu, Bin Cui, and Zhuguo Chang, "Preparation and characterization of Ag-doped BaTiO3 based X7R ceramics," Materials Research Bulletin, vol. 44, pp. 893–897, (2009).
[14] Jerry C. C. Lin, and W. C. J. Wei, "Sintering Behavior and Dielectric Properties of Yttria/Silica-Coated BaTiO3 Material with Mn–Si–O Glass," Journal of the American Ceramic Society, vol. 93, pp. 4103–4109, (2010).
[15] Jungdae Kim, Jinseong Kim, Taimin Noh, Jeongwook Kim, and Heesoo Lee, "The effect of thulium doping on the electrical properties of barium titanate ceramics for multilayered ceramic capacitors," Journal of Ceramic Processing Research, vol. 12, no. 4, pp. 426-429, (2011).
[16] Jinseong Kim, Dowan Kim, Taimin Noh, Byungmin Ahn, and Heesoo Lee, "Microstructure and thermal properties of dysprosium and thulium co-doped arium titanate ceramics for high performance multilayer ceramic capacitors," Materials Science and Engineering B, vol. 176, pp. 1227– 1231, (2011).
[17] Dowan Kim, Jinseong Kim, Taimin Noh, Jiseung Ryu, Yong-nam Kim, and Heesoo Lee, "Dielectric properties and temperature stability of BaTiO3 co-doped La2O3 and Tm2O3," Current Applied Physics, vol. 12, pp. 952-956, (2012).
[18] Lingxia Li, Ruixue Fu, Qingwei Liao, and Lujie Ji, "Doping behaviors of NiO and Nb2O5 in BaTiO3 and dielectric propertiesof BaTiO3-based X7R ceramics," Ceramics International, vol. 38, pp. 1915–1920, (2012).
[19] Bin Tang, Shu-ren Zhang, Ying Yuan, Xiao-hua Zhou, and Yi-shuai Liang, “Influence of CaZrO3 on Dielectric properties and Microstructures of BaTiO3-Based X8R Ceramics,” Science in China Series E: Technological Sciences, vol. 51, no. 9, pp. 1451-1456, (2008).
[20] Guofeng Yao, Xiaohui Wang, Tieyu Sun, and Longtu Li, “Effects of CaZrO3 on X8R Nonreducible BaTiO3-Based Dielectric Ceramics,” Journal of the American Ceramic Society, vol. 94, no.11, pp. 3856–3862, (2011).
[21] Bin Tang, Shuren Zhang, Xiaohua Zhou, and Ying Yuan, “Doping effects of Mn2+ on the Dielectric properties of Glass-doped BaTiO3-Based X8R Materials,” Journal of Material Science: Mater Electron, vol. 18, pp. 541–545, (2007).
[22] Sheng Wang, Shuren Zhang, Xiaohua Zhou, Bo Li, Zhu Chen, “Effect of Sintering Atmospheres on the Microstructure and Dielectric properties of Yb/Mg co-doped BaTiO3 Ceramics,” Materials Letters, vol. 59, no. 5, pp. 2457–2460, (2005).
[23] Lingxia Li, Yu Liang, and Ping Zhang, “Doping effect of Mg2+ on BaTiO3-Based Metal–Dielectric composite System,” Journal of Material Science: Mater Electron, vol. 21, no.3, pp. 298–301, (2010).
[24] I. Burn, and G. H. Maher, “High Resistivity BaTiO3 Ceramics Sintering in CO-CO2 Atomsphere,” Journal of Material Science, vol. 10, no. 4, pp. 633-640, (1975).
[25] S. Sato, Y. Fujikawa, A. Nagai, Y. Terada, and T. Nomura, “Effect of Rare-Earth Doping on the Temperature-Capacitance Characteristics of MLCCs with Ni electrodes,” Journal of the Ceramic Society of Japan, vol. 112, no. 1305, pp. 481-485, (2004).
[26] Min Du, Yanrong Li, Ying Yuan, Shuren Zhang, and Bin Tang “A Novel Approach to BaTiO3-based X8R Ceramics by Calcium Borosilicate Glass Ceramic Doping,” Journal of Electronic Materials, vol. 36, no. 10, pp. 1389-1394, (2007).
[27] Guofeng Yao, Xiaohui Wang, Yunyi Wu, and Longtu Li, “Nb-Doped 0.9BaTiO3–0.1(Bi0.5Na0.5)TiO3 Ceramics with Stable Delectric Properties at High Temperature,” Journal of the American Ceramic Society, vol. 95, pp. 614-618, (2012).
[28] 李豐穎,“BaTiO3-Bi1/2Na1/2TiO3 系介電陶瓷材料之研究”,碩士論文,淡江大學,台北,(2007)。
[29] L. Gao, Y. Huang, L. Liu, T. Lin, C. Liu, F. Zhou, and X. Wan, “Crystal Structure and properties of BaTiO3–(Bi0.5Na0.5)TiO3 Ceramic System,” Journal of Material Science, vol. 43, no.18, pp. 6267-6271, (2008).
[30] H. Takeda, W. Aoto, and T. Shiosaki, “BaTiO3–(Bi1/2Na1/2)TiO3 Solid-Solution Semiconducting Ceramics with Tc > 130oC,” Applied Physics Letter, vol. 87, pp. 102-104, (2005).
[31] B. J. Chu, D. R. Chen, G. R. Li, and Q. R. Yin, “Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 Ceramics,” Journal of the European Ceramic Society, vol. 22, pp. 2115-2121, (2002).
[32] L. Gao, Y. Huang, L. Liu, T. Lin, C. Liu, F. Zhou, and X. Wan, “Crystal Structure and properties of BaTiO3–(Bi0.5Na0.5)TiO3 Ceramic System,” Journal of Material Science, vol. 43, no.18, pp. 6267-6271, (2008).
[33] Ying Yuan, X. H. Zhou, B. Li, and S. R. Zhang, “Effects of BiNbO4 and Nb2O5 Additions on the Temperature Stability of Modified BaTiO3,” Ceramics-likaty, vol. 54, pp. 258-262, (2010).
[34] Y. Yuan, X.H. Zhou, C.J. Zhao, B. Li, and S.R. Zhang, “High-Temperature Capacitor Based on Ca-Doped Bi0.5Na0.5TiO3-BaTiO3 Ceramics,” Journal of Electronic Materials, vol. 39, no. 11, pp. 2471-2475, (2010).
[35] Bin Tang, Shu-ren Zhang, Xiao-hua Zhou, Ying Yuan, and Lin-bo Yang, “Preparation and Modification of high Curie Point BaTiO3-Based X9R Ceramics,” Journal of Electroceramic, vol. 25, no.1, pp. 93–97, (2010).
[36] Ling-xia Li, Ye-mei Han, Ping Zhang, Cui Ming, and Xue Wei, “Synthesis and Characterization of BaTiO3-Based X9R Ceramics,” Journal of Material Science, vol. 44, no. 20, pp. 5563–5568, (2009).
[37] Ying Yuan, Enzhu Li, Bin Tang, Li Bo, and Xiaohua Zhou, “ Effects of ZnO and CeO2 Additions on the Microstructure and Dielectric properties of Mn-Modified (Bi0.5Na0.5)0.88Ca0.12TiO3 Ceramics,” Journal of Material Science, vol. 23, pp. 309-314, (2012).
[38] Shunqi Gao, Shunhua Wu, Yonggang Zhang, Hongxing Yang,and Xinru Wang, “Study on the microstructure and dielectric properties of X9R ceramics based on BaTiO3,” Materials Science and Engineering B, vol. 176, pp. 68–71, (2011).
論文全文使用權限:同意授權於2017-08-30起公開