現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:X9R介電陶瓷微結構及性質研究 [以論文名稱查詢館藏系統]
論文英文名稱:Microstructure and Dielectric Properties of High-Temperature Stable X9R Ceramics [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料及資源工程系研究所
畢業學年度:101
出版年度:102
中文姓名:洪鈺雯
英文姓名:Yu-Wen Hung
研究生學號:100788025
學位類別:碩士
語文別:中文
口試日期:2013-07-30
論文頁數:78
指導教授中文名:王錫福
口試委員中文名:邱德威;林永仁;許志雄;陳志榮
中文關鍵詞:鈦酸鋇X9R積層陶瓷電容鈦酸鉍鈉
英文關鍵詞:BaTiO3X9R materialsMLCCs(Bi0.5Na0.5)TiO3
論文中文摘要:本實驗利用複合材料之觀點設計介電材料配方並研究其介電性質。以不同居禮點之介電材料混合達到介電性質相互補償,抑制鐵電材料在居禮點的介電峰以穩定其介電曲線。以BaTiO3分別添加不同莫爾比例的Ba2LiNb5O15及(Bi0.5Na0.5)TiO3後,分別於還原性及氧化性氣氛中進行高溫燒結形成複合介電陶瓷體。(1-x)BaTiO3-(x)Ba2LiNb5O15介電陶瓷隨著Ba2LiNb5O15之添加量增加可抑制介電性質曲線,但介電損失逐漸上升,且介電常數由1400降低至100 ~ 500。添加量在10 mol%以上可符合電子工業協會(Electronic Industries Association, EIA)標準中X9R規格(應用溫度範圍-55oC ~ 200oC,電容溫度係數ΔC/C ≦ ±15%),另外材料之常溫電阻係數最高可達到1013 Ω-cm等級,200 oC時最高則為1011 Ω-cm。
在(1-x)BaTiO3-(x)(Bi0.5Na0.5)TiO3介電陶瓷系統中,採用BaTiO3添加 10mol% (Bi0.5Na0.5)TiO3後再額外添加不同比例之金屬氧化物以改善介電性質。當添加2 mol% Nb2O5時,TCC曲線可滿足X8R規範,最高介電常數高於1800,且可以降低材料介電損失,材料絕緣性並無顯著提升,常溫電阻係數最高可達1012 Ω-cm,200 oC時最高則為1010 Ω-cm。而添加2 mol% Ta2O5時可使TCC曲線符合EIA-X9R規範,其介電常數約為1400,並可略微降低材料之介電損失,而和添加Nb2O5相同,材料的絕緣特性亦無顯著提升。
論文英文摘要:In this research, a series of the dielectric material and their dielectric properties were studied in view of composite materials. By mixing materials with different Curie point, we can inhibit the peak of dielectric curves at Curie point and obtain stable dielectric properties. In this study, barium titanate (BaTiO3) was mixed with Ba2LiNb5O15 and (Bi0.5Na0.5)TiO3 of specific molar ratio. These samples were sintering with different atmosphere (reducing or oxidative).
With increased amount of Ba2LiNb5O15, dielectric property to temperature was much stable, and dielectric loss was reduced. The Temperature Coefficient of Capacitance (TCC) of BaTiO3-Ba2LiNb5O15 ceramic could satisfy X9R specifications of Electronics Industry Association (EIA) standard (operation temperature range is between -55 to 200°C, TCC shift limit is 15%) with max dielectric constant(K) 500 but higher dielectric loss(tanδ) 2.5%. The resistivity of 25oC is up to 1013 Ω-cm and 1011 Ω-cm at 200 oC.
In the study of 0.9BaTiO3-0.1(Bi0.5Na0.5)TiO3 series ceramics, specific molar ratio of Nb2O5 and Ta2O5 were added. While adding 2 mol% Nb2O5, the TCC curve could satisfy X8R specifications and obtain max K value 1865 with lower dielectric loss. But the addition of Nb2O5 could not benefit electric insulation performance, the resistivity of 25oC is up to 1012 Ω-cm and 1010 Ω-cm at 200 oC. In the other hand, the dopant of Ta2O5 could make stable dielectric properties, adding 2 mol% Ta2O5 could let TCC curve satisfied X9R specifications and lower tanδ. The resistivity of 25oC is up to 1012 Ω-cm and 1010 Ω-cm at 200 oC as same as Nb2O5 doped experiment.
論文目次:摘 要 i
ABSTRACT iii
致 謝 v
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1前言 1
1.2 研究目的 2
第二章 基礎理論及文獻回顧 3
2.1介電材料與電容器 3
2.2介電陶瓷配方基本特性 4
2.2.1 BaTiO3晶體性質 4
2.2.2 (Bi0.5Na0.5)TiO3晶體性質 8
2.2.3 Ba2LiNb5O15晶體性質 10
2.3 X9R高溫穩定介電陶瓷 11
第三章 實驗流程與量測 15
3.1 實驗藥品規格 15
3.1.1 商用鈦酸鋇 17
3.1.2 黏結劑(PVA) 17
3.2 實驗流程 18
3.2.1 粉末配置及燒結體製備 18
1.3 材料性質分析及檢測儀器規格 20
3.3.1 體密度量測 20
3.3.2 X光繞射分析 20
3.3.3 顯微結構觀察 21
3.3.4 電性量測 21
第四章 結果與討論 24
4.1 BaTiO3-Ba2LiNb5O15介電陶瓷 24
4.1.1 Ba2LiNb5O15煆燒後晶相結構 24
4.1.2 燒結緻密化及再氧化熱處理 25
4.1.3 燒結後晶相結構分析 28
4.1.4 燒結體顯微組織分析 32
4.1.5 介電性質分析 36
4.1.6 BaTiO3-Ba2LiNb5O15介電陶瓷可行性 39
4.2 BaTiO3-(Bi0.5Na0.5)TiO3介電陶瓷 40
4.2.1 (Bi0.5Na0.5)TiO3煆燒後晶相結構 40
4.2.2 燒結緻密化 41
4.2.3 燒結後晶相結構分析 42
4.2.4 燒結體顯微組織分析 45
4.2.5 介電性質分析 49
4.3 BaTiO3-0.1(Bi0.5Na0.5)TiO3額外添加Nb2O5 52
4.3.1 燒結緻密化 52
4.3.2 燒結後晶相結構分析 53
4.3.3 燒結體顯微組織分析 56
4.3.4 介電性質分析 59
4.4 BaTiO3-0.1(Bi0.5Na0.5)TiO3額外添加Ta2O5 62
4.4.1 燒結緻密化 62
4.4.2 燒結後晶相結構分析 63
4.4.3 燒結體顯微組織分析 66
4.4.4 介電性質分析 69
4.5 BaTiO3-0.1(Bi0.5Na0.5)TiO3額外添加實驗 72
4.5.1 BaTiO3-0.1(Bi0.5Na0.5)TiO3系列介電陶瓷可行性 72
第五章 結論 73
參考文獻 75
論文參考文獻:[1]Hiroshi Kishi, Youichi Mizuno and Hirokazu Chazono, “Base-Metal Electrode-Multilayer ceramic capacitors,” Japanese Journal of Applied Physics, vol. 42, 2003, pp. 1-15.
[2]B. Jaffe, W. R. Cook Jr., and H. Jaffe, Piezoelectric Ceramics, Academic Press, London, 1971.
[3]吳朗,電子陶瓷-介電陶瓷,台北,全欣科技圖書,1994 ,第154頁
[4]Z.X. Chen, C.G. Liu, “Theoretical investigation on BaTiO3 with periodic density functional theory BLYP method,” Chem. Phys., vol.270, 2001, pp. 253-261.
[5]Lanfang Gao, Yanqiu Huang, Liang Liu, Tiantian Liu, Chunfeng Liu, Fei Zhou, Xinwu Wan, “Crystal structure and properties of BaTiO3-(Bi0.5Na0.5)TiO3 ceramic system,” Journal of Materials Science, vol.43, 1979, pp. 6267-6271.
[6]I. Burn, “Mn-doped polycrystalline BaTiO3,” Journal of Materials Science, vol.14, 1979, pp. 2453-2458.
[7]S. Sumita, M. Ikeda, Y. Nakano, K. Nishiyama, and T. Nomura, “Degradation of Multilayer Ceramic Capacitors with Nickel Electrodes,” Journal of the American Ceramic Society, 74, 1991, pp. 2739-2746.
[8]I. Burn, “Ceramic Disk Capacitor with Base-Metal Electrode,” Ceramic Bulletin, 57, 1978, pp. 600-604.
[9]G.A. Smolenskii, V.A. Isupov and A.I. Agranovskaya, “Dielectric polarization of a number of complex compounds,” Sov. Phys. Solid State, vol.10, 1960, pp. 1429-1437.
[10]J. Suchanicz, “Axial pressure on a phase transition nature and ferroelectric properties of single crystal Na0.5Bi0.5TiO3,” J. Phys. Chem. Solids, vol.62, 2001, pp.1271-1276.
[11]T. Takenaka, K. Sakata, “Piezoelectric properties of (Bi1/2Na1/2)TiO3 - based ceramics,” Ferroelectrics, vol.106, 1990, pp. 375-380.
[12]H. Takeda, W. Aoto, and T. Shiosaki, “BaTiO3-(Bi1/2Na1/2)TiO3 Solid-Solution Semiconducting Ceramics with Tc > 130oC,” Applied Physics Letter, vol. 87, 2005, pp. 102-104.
[13]B. J. Chu, D. R. Chen, G. R. Li, and Q. R. Yin, “Electrical properties of Na1/2Bi1/2TiO3-BaTiO3 Ceramics,” Journal of the European Ceramic Society, vol. 22, 2002, pp. 2115-2121.
[14]H. Takeda, T. Shimada, Y. Katsuyama, “Fabrication and operation limit of lead-free PTCR ceramics using BaTiO3-(Na1/2Bi1/2)TiO3 system,” Journal of Electroceramics , vol. 22, 2009, pp. 263-269.
[15]L. Gao, Y. Huang, L. Liu, T. Lin, C. Liu, F. Zhou, and X. Wan, “Crystal Structure and properties of BaTiO3-(Bi0.5Na0.5)TiO3 Ceramic System,” Journal of Material Science, vol. 43, no.18, 2008, pp. 6267-6271.
[16]O. Bernecker, H. Matthes, A. Marshall, “Optical Properties of Ba2LiNb5O15,” Physica Sstatus Solidi, vol. 17, 1973, pp 453.
[17]V. Kramer, H. Matthes, A. Marshall, “.Phase studies of the system Li2O-BaO-Nb2O5 in relation to Czochralski growth problems of Ba2LiNb5Ol5 single crystals,” Journal of Materials Science, vol.10, 1975, pp.547-550.
[18]Banarji Behera, P. Nayaka,, R.N.P. Choudhary“ Structural, dielectric and electrical properties of LiBa2X5O15 (X =Nb and Ta) ceramics,” Materials Chemistry and Physics, vol. 100, 2006, pp.138-141.
[19]Shunqi Gao, Shunhua Wu, Yonggang Zhang, Hongxing Yang,and Xinru Wang, “Study on the microstructure and dielectric properties of X9R ceramics based on BaTiO3,” Materials Science and Engineering B, vol. 176, 2011, pp. 68-71.
[20]Guofeng Yao, Xiaohui Wang, Yunyi Wu, and Longtu Li, “Nb-Doped 0.9BaTiO3-0.1(Bi0.5Na0.5)TiO3 Ceramics with Stable Delectric Properties at High Temperature,” Journal of the American Ceramic Society, vol. 95, 2012, pp. 614-618.
[21]Guofeng Yao, Xiaohui Wang, Yichi Zhang, Zhengbo Shen, and Longtu Li, “Nb-Modified 0.9BaTiO3-0.1(Bi0.5Na0.5)TiO3 Ceramics for X9R High-Temperature Dielectrics Application Prepared by Coating Method,” Journal of the American Ceramic Society, vol. 95, 2012, pp. 3525-3531.
[22]Ying Yuan, X. H. Zhou, B. Li, and S. R. Zhang, “Effects of BiNbO4 and Nb2O5 Additions on the Temperature Stability of Modified BaTiO3,” Ceramics-likaty, vol. 54, 2010, pp. 258-262.
[23]Ling-xia Li, Ye-mei Han, Ping Zhang,Cui Ming, and Xue Wei, “Synthesis and Characterization of BaTiO3-Based X9R Ceramics,” Journal of Material Science, vol. 44, no. 20, 2009, pp. 5563-5568.
[24]Y. Yuan, X.H. Zhou, C.J. Zhao, B. Li, and S.R. Zhang, “High-Temperature Capacitor Based on Ca-Doped Bi0.5Na0.5TiO3-BaTiO3 Ceramics,” Journal of Electronic Materials, vol. 39, no. 11, 2010, pp. 2471-2475.
[25]Ying Yuan, Enzhu Li, Bin Tang, Li Bo, and Xiaohua Zhou, “ Effects of ZnO and CeO2 Additions on the Microstructure and Dielectric properties of Mn-Modified (Bi0.5Na0.5)0.88Ca0.12TiO3 Ceramics,” Journal of Material Science, vol. 23, 2012, pp. 309-314.
[26]Sea-Fue Wang, Jian-Hua Li, Yung-Fu Hsu, Yu-Chuan Wu, Yuan-Cheng Lai, Ming-Hua Chen “Dielectric properties and microstructures of non-reducible high-temperature stable X9R ceramics,” Journal of the European Ceramic Society, (2013).
[27]K. Datta, K. Roleder, and P. A. Thomas, “Enhanced tetragonality in lead-free piezoelectric(1−x)BaTiO3-xNa1/2Bi1/2TiO3 solid solutions where x = 0.05-0.40,” Journal of Applied Physic, vol. 106, 2009.
[28]Yasushi Kaneko, Feridoon Azough, Toshiki Kida, Kentaro Ito, Takeshi Shimada, Tetsuroh, “(Ba1+xTiO3)-(Bi0.5Na0.5TiO3) Lead-Free, Positive Temperature Coefficient of Resistivity Ceramics: PTC Behavior and Atomic Level Microstructures,” Journal of the American Ceramic Society, vol.95, 2012, pp. 3928-3934.
[29]Y. Yuan, S. R. Zhang , X. H. Zhou , B. Tang, “Effects of Nb2O5 doping on the microstructure and the dielectric temperature characteristics of barium titanate ceramics”, Journal of Materials Science, vol.44, 2009, pp.3751-3757.
[30]Yeon Jung Kim, June Won Hyun, Hee Soo Kim, Joo Ho Lee, Mi Young Yun, S. J. Noh, and Yong Hyun Ahn, , “Microstructural Characterization and Dielectric Properties of Barium Titanate Solid Solutions with Donor Dopants”, Bulletin of the Korean Chemical Society, vol.30, 2009, no.6.
[31]Yaseen Iqbal, Asad Jamal, “The effect of Ta2O5- and ZnO-doping on the Curie temperature of BaTiO3”, Journal of Physics, vol.371, 2012, pp.12-35.
論文全文使用權限:不同意授權