現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:嵌入式即時運動控制核心為基礎之加速度回授控制器開發 [以論文名稱查詢館藏系統]
論文英文名稱:The Development of Acceleration Feedback Controller based on Embedded Multitasking Real-Time Kernel [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:自動化科技研究所
中文姓名:李峰吉
英文姓名:Feng-Ghi Li
研究生學號:93618015
學位類別:碩士
語文別:中文
口試日期:2006-07-17
論文頁數:71
指導教授中文名:陳金聖
口試委員中文名:邊平遠;黃明熙
中文關鍵詞:關鍵詞:硬即時即時多工核心電腦數值運動控制器加速度回授控制干擾補償器
英文關鍵詞:Keywords:Hard real-timeMulti-tasking real-time operation systemComputerized numerical controllerAcceleration feedback controlModel-based disturbance compensator.
論文中文摘要:本文主要目的為開發一嵌入式即時多工運動控制器。採用德州儀器公司TMS320C6711 DSP與Xilinx公司 Spartan-II XC2S50 FPGA,分別規劃成嵌入式系統之運算核心與處理外部I/O之橋接界面,另外為了使軟體也能配合硬體之硬即時要求,也完成在DSP上嵌入一即時多工作業系統 ;以此為架構之嵌入式系統擁有許多優點,如透過作業系統的資源管理、使得資源能更有效運用;工作內容之模組化,使得軟體設計彈性且除錯也較為容易等。最後,充分利用所建構之即時多工平台,將運動控制核心之內容,拆解成數個工作模組實現於平台上,達成本文運動控制器實現目的。
在控制器設計主要採用Cascade控制器架構來完成,乃利用內迴路控制器高頻寬之設計,以阻斷干擾因子對外迴路受控變數之影響;本文內回路為加速度回授控制,在外回路為位置回授控制。內回路採加速回授控制,主要是希望加速度回授控制,以取代一般伺服控制器之電流回路控制。並且希望內回路干擾影響盡可能降低,故在加速度內回路設計干擾補償器,將干擾影響消除,使得外部位置回路不受干擾影響,提高系統之精度。
最後,成功的使用運算速度快與多樣I/O功能的數位訊號處理器,搭配 即時多工作業系統,完成嵌入式即時多工運動控制器開發,透過實驗驗證,本嵌入式系統穩定性佳並具即時性,達到運動控制器高速與高精度之目標。
論文英文摘要:Industrial motion controller is usually developed in two phases: motion control design and real-time implementation. For first phase, this thesis presents a digital servo driver that realizes a novel feedback controller based on position, velocity and acceleration feedback using optical encoder information. Compared with the conventional cascade control system, this novel control scheme has high bandwidth and robustness. For second phase, this thesis develops an embedded motion controller based on TI TMS320C6711 DSP, XILINX Spartan-II XC2S50 FPGA and multitasking real-time kernel.
Acceleration feedback can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to the unsatisfactory results of most acceleration measurement methods. A digital state observer is firstly proposed to estimate the velocity and acceleration of DC motor in this paper. Then, we design a model-based disturbance compensator (MBDC) in the acceleration feedback loop to compensate the influence of disturbance. When the DC servo motor is controlled by the proposed acceleration feedback control system, the total servo system from acceleration to position becomes the acceleration controlled system which is fixed to a nominal double integral dynamics in the presence of parameter variation and torque disturbance. Hence, the fast and precise position control can be carried out easily.
In this paper, the control scheme is implemented based on the TI TMS320C6711 DSP and XILINX Spartan-II XC2S50 FPGA. The DSP take the main task of control firmware and FPGA take the tasks of communication handshake and interface to DC motor amplifier. The proposed acceleration feedback controller and PD position feedback controller are evaluated on the DSP, which is ported a multi-tasking real-time operation system (RTOS), controlled DC servo motor positioning system. The experimental results show that this digital servo system is flexibility, robustness and remarkably reduces the tracking error.
論文目次:中文摘要..............................................................................................................i
英文摘要.............................................................................................................ii.
誌謝....................................................................................................................iv
目錄.....................................................................................................................v
表索引...............................................................................................................vii圖索引..............................................................................................................viii
第一章 序論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 本文架構 4
第二章 嵌入式即時多工運動控制器 5
2.1 嵌入式系統 5
2.2 嵌入式系統硬體架構 7
2.2.1 DSP based控制器 9
2.2.2馬達功率放大控制板 12
2.3 嵌入式即時多工軟體 14
2.4 運動控制系統 15
2.4.1 高階命令解譯 17
2.4.2 運動路徑插值器 18
2.4.2.1 線性插值法 18
2.4.2.2 圓弧插值法 19
2.4.2.3 加減速規劃 20
2.4.2.4 圓弧加減速模擬 21
2.4.3 伺服運動控制器 23
2.4.4 數位訊號處理器與外部硬體通訊 24
2.5嵌入式控制器實現 25
2.5.1 uC/OS-II即時系統在DSP6711進行移植 25
2.5.2 運動控制核心工作規劃 26
2.5.3 運動控制核心實現 28
第三章 系統鑑別 31
3.1 力量常數量測 31
3.2 利用干擾觀測器來配合參數估測之理論 32
3.3 馬達參數鑑別 39
第四章 加速度回路控制器設計 41
4.1 控制器設計 41
4.2 加速度觀測器設計 44
4.2.1 可觀測性與可控制性 44
4.2.2 加速度觀測器 45
第五章 干擾補償器 49
5.1 干擾補償器架構圖 49
5.2 干擾補償控制器設計 50
5.3 干擾補償器模擬 53
第六章 實驗結果 58
6.1 多段指令(G/M code)實驗 59
6.2 加速度觀測器實驗 60
6.3 干擾補償器(MBDC)實驗 61
6.4 軌跡誤差分析實驗 64
第七章 結論 67
7.1 總結 67
7.2 未來方向 67
參考文獻……………………………………………………………………………..69
論文參考文獻:[1] George Ellis and Jens Ohno Krah, Observer-based Resolver Conversion in Industrial Servo System.
[2] Peter B. Schmidt and Robert D. Lorenz, Design Principle and Implementation of Acceleration Feedback to Improve Performance of dc Driver, IEEE Transactions on Iindustry Aapplication, vol.28, NO.3, 1992.
[3] Sami Valiviita and Seppo J. Ovaska, Delayless Acceleration Measurement Method for Elevator Control, IEEE Transactions on Industry Application, vol.45, NO.2, 1998.
[4] Pierre R. Belanger, Estimation of Angular Velocity and Acceleration from Shaft Encoder Measurements, IEEE International Conference on Robotics and Automation, 1992.
[5] Seppo J.Ovaska and Sami Valiviita, Angular Acceleration Measurement: A Review, IEEE Transactions on Instrumentation and Measurement, vol.47, NO.5, 1998.
[6] Sami Valiviita, Seppo J. Ovaska and Olli Vainio, Polynomial Predict Filter Filtering in Control Instrumentation: A Review, IEEE Transactions on Industrial Electronics, vol.46, NO.5, 1999.
[7] Sami Valiviita and Olli Vainio, Delayless Differentiation Algorithm and Its Efficient Implementation for Motion Control Applications, IEEE Transactions on Instrumentation and Measurement, vol.48, NO.5, 1999.
[8] Sami Valiviita and Seppo J.Ovaska, Delayless Recursive Differentiator with Effect Noise Attenuation for Motion Control Applications, IEEE, 1998.
[9] Moncef H. Moatemri, Peter B. Schmidt and Robert D. Lorenz, Implementation of a DSP-Based, Acceleration Feedback Robot Controller: Practical Issue and Design Limits, IEEE, 1991.
[10] Se-Han Lee and Jac-Bok Song, Acceleration Estimator for Low-Velocity and Low-Acceleration Regions Based on Encoder Position Data, IEEE/ASME Transactions on Mechatronics , vol.6, NO.1, 2001.
[11] Se-Han Lee and Steven, Improve Velocity Estimation for Low-Speed and Transient Regimes Using Low-Resolution Encoder, IEEE/ASME Transactions on Mechatronics , vol.9, NO.3, 2004.
[12] Carl J. Kempf and Seiichi Kobayashi, Disturbance Observer and Feedforward Design for a High-Speed Direct-Driver Positioning Table, IEEE Transactions on Control System Technology, vol.7, NO. 5, 1999.
[13] Alexander and Peter Mutschler, Speed Acquisition Methods for High-Bandwidth Servo Drives, IEEE, 2005.
[14] Ho-Seop Jeong and Chong-Won Lee, Time Delay Control With State Feedback for Azimuth Motion of the Frictionless positioning Device, IEEE/ASME Transactions on Mechatronics , vol.2, NO.3, 1997.
[15] Kenji KANEKO, Natsuo SUZUKI, Kouhei OHNISHI and Kazuo TANIE, High Stiffness Torque Control for a Geared DC Motor Based on Acceleration Controller, IEEE, 1991.
[16] Josko Deur and Nedjeljko Peric, A Comparative Study of Servosystems with Acceleration Feedback, IEEE, 2000.
[17] Byeong-Kap Choi, Chong-Ho Choi and Hyuk Lim, Model-Based Disturbance Attenuation for CNC Machining Center in Cutting Process, IEEE/ASME Transactions on Mechatronics, VOL. 4, NO. 2, JUNE 1999.
[18] Kevin Payette, Synchronized Motion Control with the Virtual Shaft Control Algorithm and Acceleration Feedback, Proceedings of the American Control Conference, 1999.
[19] M.-C. Tsai, I.-F. Chiu and M.-Y. Cheng ,Design and implementation of command and friction feedforward control for CNC motion controllers, IEEE Proc.-Control Theory Appl., vol. 151, No. 1, January 2004.
[20] Jean J. Labrosse, MicroC/OS-II The Real-Time Kernel, CMP Books, 2002.
[21] 廖兼賢,“以離散位置資訊做速度與加速度估測之研究”,成功大學電機工程學系,碩士論文,民國九十三年。
[22] 陳永欽,“直流馬達加速度回授控制器之研究”,台灣大學機械工程學系,碩士論文,民國八十二年。
[23] 呂信宏,“內含DDOB與加速度迴路之穩健精密運動控制器設計”,交通大學電機與控制工程學系,民國九十年。
[24] 胡家勝,“阻抗控制於力覺回饋控制應用之設計與實現”,成功大學機械工程學系,碩士論文,民國九十二年。
[25] 陳立業,“即時NURBS多維運動軌跡精度補償策略”,台北科技大學自動化科技研究所,碩士論文,民國九十四年。
[26] 董勝源,“TI 6711 DSP入門與實作”,宏友圖書開發股份有限公司,2003。
[27] Gene F. Franklin and J. , David Powell, Digital Control of dynamic System, Addison Wesley Longman, Inc. Third Edition, 1997.
[28] Sanjit K. Mitra, Digital Signal Processing, McGraw-Hill, Third Edition, 2006.
[29] Norman S. Nise, Control System Engineer, John Wiley & Sons, Inc. Third Edition, 2000.
[30] United State Patent, Servo Control Apparatus. Patent Number: 5091684, Faunc Ltd., Minamitsuru, Japan.
論文全文使用權限:同意授權於2006-08-02起公開