現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:適應性多取樣頻率直流伺服馬達數位控制器之設計與實現 [以論文名稱查詢館藏系統]
論文英文名稱:Design and Implementation of a Adaptive Multirate Digital Controller for DC Servo Motor [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:自動化科技研究所
中文姓名:魏漢樹
英文姓名:Han-Shu Wei
研究生學號:94618017
學位類別:碩士
語文別:中文
口試日期:2007-07-05
論文頁數:70
指導教授中文名:陳金聖
口試委員中文名:黃明熙;謝曜式
中文關鍵詞:硬即時即時多工核心電腦數值運動控制器多取樣頻率加速度迴授數位控制干擾估測器適應性控制
英文關鍵詞:Hard real-timeMulti-tasking real-time operation systemComputerized numerical controllerMultirate digital acceleration feedback controlDisturbance observerAdaptive control
論文中文摘要:本文主要目的為開發一嵌入式即時多工運動控制器,運動控制器之技術主要包含: 1) 控制演算法設計,2) 即時控制系統實現。本論文針對上述二部份均提出完整策略。
在控制器設計主要採用Cascade控制器架構來完成,乃利用內迴路控制器高頻寬之設計,以阻斷干擾因子對外迴路受控變數之影響;本文內迴路為加速度回授控制,在外迴路為位置回授控制。內迴路採多取樣頻率加速度回授數位控制,主要是希望以加速度回授控制取代一般伺服控制器之電流迴路控制。並且希望內迴路干擾影響與J、B變動影響盡可能降低,故在加速度內迴路設計干擾估測器與適應性控制,使得外部位置迴路不受干擾與J、B變動影響,提高系統之精度。
採用德州儀器公司TMS320C6711 DSP與Xilinx公司 Spartan-II XC2S50 FPGA,分別規劃成嵌入式系統之運算核心與處理外部I/O之橋接界面,另外為了使軟體也能配合硬體之硬即時要求,也完成在DSP上嵌入一即時多工作業系統 ;以此為架構之嵌入式系統擁有許多優點,如透過作業系統的資源管理、使得資源能更有效運用;工作內容之模組化,使得軟體設計彈性且除錯也較為容易等。最後,充分利用所建構之即時多工平台,將運動控制核心之內容,拆解成數個工作模組實現於平台上,達成本文運動控制器實現目的,透過實驗驗證,本嵌入式系統穩定性佳並具即時性,達到運動控制器高速與高精度之目標。
論文英文摘要:Industrial motion controller is usually developed in two phases: motion control design and real-time implementation. For first phase, this thesis presents a digital servo driver that realizes a novel feedback controller based on position, velocity and acceleration feedback using optical encoder information. Compared with the conventional cascade control system, this novel control scheme has high bandwidth and robustness. For second phase, this thesis develops an embedded motion controller based on TI TMS320C6711 DSP, XILINX Spartan-II XC2S50 FPGA and multitasking real-time kernel.
Acceleration feedback can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to the unsatisfactory results of most acceleration measurement methods. A multirate digital state observer is firstly proposed to estimate the velocity and acceleration of DC motor in this thesis. Then, we design a disturbance observer and adaptive control in the acceleration feedback loop to compensate the influence of disturbance and estimate the variation of inertia and viscous damping constant respectively. When the DC servo motor is controlled by the proposed multirate digital acceleration feedback control system, the total servo system from acceleration to position becomes the acceleration controlled system which is fixed to a nominal double integral dynamics in the presence of parameter variation and torque disturbance. Hence, the fast and precise position control can be carried out easily.
In this thesis, the control scheme is implemented based on the TI TMS320C6711 DSP and XILINX Spartan-II XC2S50 FPGA. The DSP take the main task of control firmware and FPGA take the tasks of communication handshake and interface to DC motor amplifier. The proposed acceleration feedback controller and PD position feedback controller are evaluated on the DSP, which is ported a multi-tasking real-time operation system (RTOS), controlled DC servo motor positioning system. The experimental results show that this digital servo system is flexibility, robustness and remarkably reduces the tracking error.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻探討 2
1.3 研究方法 4
1.4 論文架構 5
第二章 硬體架構 7
2.1 嵌入式系統 7
2.2 嵌入式系統硬體架構 9
2.3 DSP based控制器 11
2.4 嵌入式即時多工軟體 15
第三章 系統鑑別 17
3.1 力量常數量測 18
3.2 慣量係數、黏滯係數與庫侖摩擦力之鑑別 20
3.3 鑑別實驗 26
第四章 加速度迴路之設計與回授控制 29
4.1 加速度觀測器之設計 29
4.2 加速度回授控制器之設計 34
4.3 干擾估測與補償 35
4.4 Multirate數位控制架構 38
4.4.1 控制訊號與encoder取樣的量化問題之考量 41
4.4.2 Multirate數位控制設計 42
4.4.2.1 加速度觀測器之數位化與設計 44
4.4.2.2 干擾估測器之數位化與設計 46
4.5 Jeq、Beq變動之影響與抑制 48
第五章 模擬與實驗 55
5.1 加速度迴路之模擬與實驗 55
5.2干擾估測器與適應性參數估測之模擬與實驗 57
5.3參數變動與外部干擾對系統響應之實驗 61
5.4加速度控制器加入ACDOB之實驗 63
第六章 結論 66
6.1 總結 66
6.2 未來方向 66
參考文獻 68
論文參考文獻:[1] J. Deur and N. Peric, “A Comparative Study of Servo systems with Acceleration Feedback”, IEEE Industry Application Conference, Italy, 2000, pp. 1533-1540.
[2] K. Kaneko, N. Suzuki, K. Ohnishi and K. Tanie,” High Stiffness Torque Control for a Geared DC Motor Based on Acceleration Controller”, IEEE Industrial Electronics, Control and Instrumentation, Kobe, Japan, vol.1, 1991. pp. 849-854.
[3] S. H. Lee, T. A. Lasky and S. A. Velinsky,“ Improve Velocity Estimation for Low-Speed and Transient Regimes Using Low-Resolution Encoder”, IEEE/ASME Transactions on Mechatronics , vol.9, no.3, 2004, pp. 553-560.
[4] “PLATINUM DDL and SERVOSTAR setup Guide,” Document number: M-LN-016-0702, Kollmorgen, Danaher Motion Company, Jun. 20, 2002
[5] P. B. Schmidt and R. D. Lorenz,“ Design principles and implementation of acceleration feedback to improve performance of DC drives,” IEEE Trans. On Industry Application, vol. 28, May 1992, pp. 594-599.
[6] K. Payette,“ Synchronized motion control with the virtual shaft control algorithm and acceleration feedback,” Proc. of the American Control Conference (ACC 1999), San Diego, California, June 1999, pp.2102-2106.
[7] S. Valiviita, S. J. Ovaska and O. Vainio,” Polynomial Predictive Filtering in Control Instrumentation: A Review”, IEEE Transactions on Industrial Electronics, vol.46, no.5, 1999, pp. 876-888.
[8] S. J. Ovaska and S. Valiviita,” Angular Acceleration Measurement: A Review”, IEEE Transactions on Instrumentation and Measurement, vol.47, no.5, 1998, pp. 1211-1217.
[9] S. Valiviita and O. Vainio,” Delayless Differentiation Algorithm and Its Efficient Implementation for Motion Control Applications”, IEEE Transactions on Instrumentation and Measurement, vol.48, no.5, 1999, pp. 967-971.
[10] S. Valiviita and S. J. Ovaska, “Delayless Recursive Differentiator with Efficient Noise Attenuation for Motion Control Applications”, IEEE Industrial Electronics Society, Aachen, Germany, vol. 3, 1998, pp. 1481-1486.
[11] P. R. Belanger, P. Dobrovolny, A. Helmy and X. Zhang, “Estimation of angular velocity and acceleration from shaft-encoder measurements,” Int. J. Robot. Res., vol. 17, no. 11, Nov. 1998, pp. 1225-1233.
[12] S. H. Lee and J. B. Song, “Acceleration estimator for low-velocity and low-acceleration regions based on encoder position data,” IEEE/ASME Trans. on Mechatronics, vol. 6, no. 1, Mar. 2001, pp. 58-64.
[13] X. Z. Gao and S. J. Ovaska, “Acceleration signal estimation using neural networks,” Measurement Science and Technology, vol. 12, no. 10, Dec. 2001, pp. 1611-1619.
[14] M. H. Moatemri, P. B. Schmidt and R. D. Lorenz,” Implementation of a DSP-Based, Acceleration Feedback Robot Controller: Practical Issue and Design Limits,” IEEE Industry Applications Society Annual Meeting, Dearborn, MI, 1991, pp.1425-1430.
[15] H. Fujimoto, Y. Hori, and A. Kawamura, “Perfect tracking control based on multirate feedforward control with generalized sampling periods,” IEEE Trans. on Industrial Electronics, vol. 48, no. 3, Jun. 2001, pp. 636-644.
[16] S. H. Lee, “Multirate digital control system design and its application to computer disk drives,” IEEE Trans. on Control System Technology, vol. 14, No. 1, Jan. 2006, pp. 124-133.
[17] C. J. Kempf and S. Kobayashi, "Disturbance Observer and Feed-forward Design for a High-Speed Direct-Drive Positioning Table," IEEE Transactions on Control Systems Technology, vol. 7, no. 5, Sept. 1999, pp. 513-526.
[18] T. Ohtani, N. Takada and K. Tanaka, "Vector Control of Induction Motor without Shaft Encoder," IEEE Trans. Industry Applications, vol.28, no.1, 1992, pp.157-164.
[19] C. S. Chen, Y. R. Lee, "Auto-Tuning Digital Control Based on Parameters Identification and Disturbance Observer," ICAM International Conference on Advanced Manufacture, Taipei, Taiwan, Nov 28 – Dec 2 2005, pp.529-534.
[20] L. Zhen, and L. Xu, "Sensorless Field Orientation Control of Induction Machines Based on a Mutual MRAS Scheme," IEEE Trans. Industrial Electronics, vol.45, no.5, 1998, pp.1015-1020.
[21] M. C. Tsai, I. F. Chiu and M. Y. Cheng ,”Design and implementation of command and friction feedforward control for CNC motion controllers”, IEEE Proc.-Control Theory Applications. ,vol. 151, no. 1, January 2004, pp. 13-20.
[22] 董勝源,TI 6711 DSP入門與實作,台北,宏友圖書開發股份有限公司,2003。
[23] 陳立業,即時NURBS多維運動軌跡精度補償策略,碩士論文,國立台北科技大學自動化科技研究所,台北,2005。
[24] Jean J. Labrosse, MicroC/OS-II The Real-Time Kernel, CMP Books, 2002.
[25] 李峰吉,嵌入式即時運動控制核心為基礎之加速度回授控制器開發,碩士論文,國立台北科技大學自動化科技研究所,台北,2006。
[26] Gene F. Frankin, J. David Powell and Michael Workman, Digital Control of Dynamic Systems, Canada: Addison-Wesley, 1997, pp.1-5.
論文全文使用權限:同意授權於2008-07-23起公開