現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以溶膠-凝膠法製備LiVOPO4正極材料之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on the Preparation of LiVOPO4 Cathode Materials by Sol-Gel Synthesis [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:99
出版年度:100
中文姓名:黃薇蒨
英文姓名:Wei-chien Hung
研究生學號:98738022
學位類別:碩士
語文別:中文
口試日期:2011-07-18
論文頁數:75
指導教授中文名:蔡德華
口試委員中文名:郭文正;張裕祺;方旭偉
中文關鍵詞:鋰離子電池極材料溶膠:凝膠法
英文關鍵詞:Li ion batteriesCathode materialSol–gel method
論文中文摘要:本研究是以LiCO3、LiOH、V2O5、NH4H2PO4和草酸等為原料,並採用溶膠–凝膠法合成了鋰離子二次電池正極材料磷酸釩氧鋰 (LiVOPO4)。探討了合成溫度、反應時間等因素對樣品晶相組成的影響`。
由實驗結果可知,在空氣中600℃下鍛燒4小時,即可得到我們所要的樣品,並用X射線衍射儀(XRD)、掃描式電子顯微鏡(SEM)、去分析我們的樣品以得到其結構和型態,結果表明合成的樣品LiVOPO4具有β晶相;並以熱重分析儀(TGA)去分析材料的熱穩定性。
論文英文摘要:In this study, Cathode materials lithium vanadyl phosphates (LiVOPO4) were synthesized by sol–gel method, with LiCO3, LiOH, V2O5, NH4H2PO4 and oxalic acid as the raw material. The effects of reaction conditions, synthesis temperature, reaction time, on the crystalling phase composition of sample.
By the experimental result, we obtained product was sintered at 500℃for 4h in air. The structural, morphological were investigated by mean of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), The results showed that the sample is β-phase. Thermal gravimetric analysis (TGA) employed in research and testing, to determine characteristics of materials to determine degradation temperatures.
論文目次:摘 要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1正極材料的製備方法 3
2.1.1溶膠-凝膠法(sol-gel法) 3
2.1.2高溫固相法 4
2.1.3水熱法 4
2.2釩系磷酸鹽型正極材料的研究進展 6
2.2.1 Li3V2(PO4)3 6
2.2.1.1菱形結構Li3V2(PO4)3正極材料 6
2.2.1.2單斜結構Li3V2(PO4)3正極材料 8
2.2.2 VOPO4 10
2.2.3 LiVOPO4 13
2.2.4 LiVPO4F正極材料 14
2.2.5 LiVP2O7正極材料 18
第三章 實驗設備與方法 19
3.1 實驗藥品 19
3.2 實驗設備 20
3.3 實驗流程及步驟 22
3.3.1 使用碳酸鋰為鋰源 22
3.3.1.1 改變鍛燒溫度的實驗步驟 23
3.3.1.2改變鍛燒時間實驗步驟 23
3.3.2 使用氫氧化鋰為鋰源 25
3.3.2.1改變鍛燒溫度的實驗步驟 26
3.3.2.2改變鍛燒時間實驗步驟 26
3.4 實驗分析項目與方法 28
3.4.1 X-ray繞射儀(XRD) 28
3.4.2 熱重分析儀(TGA) 29
3.4.3掃描式電子顯微鏡(SEM) 30
3.4.4穿透式電子顯微鏡(TEM) 32
第四章 結果與討論 33
4.1 LIVOPO4之XRD分析 33
4.1.1以碳酸鋰作為鋰離子來源 35
4.1.1.1 合成條件對材料的影響 35
4.1.2以氫氧化鋰提供鋰離子來源 42
4.1.2.1 合成條件對材料的影響 42
4.2 LIVOPO4之SEM分析 44
4.3 LIVOPO4之TGA分析 51
4.4 LIVOPO4之TEM分析 63
第五章 結論 66
參考文獻 67
Appendix 文獻回顧表 74
論文參考文獻:黃可龍,王兆翔,劉素琴,“鋰離子電池原理與技術”,台北:五南圖書出版社, (2010)。
Rougier a, Graveau P, Delama C, J. Electrochemical Society, 146-1168(1999).
李運姣,洪良仕,習小明,“鋰離子電池正極材料LiFePO4的濕化學合成研究進展”,礦治工程,26(5), 45~51 (2006)。
A. Vadivel Murugan, T. Muraliganth, and A. Manthiram,” Comparison of Microwave Assisted Solvothermal and Hydrothermal Syntheses of LiFePO4/C Nanocomposite Cathodes for Lithium Ion Batteries”, J. Phys. Chem. C, 112, 14665–14671(2008).
S. Okada, S. Sawa, M. Egashira, J. Yamaki, M. Tabuchi, H. Kageyama, T. Konishi, A. Yoshino, J. Power Sources, 97-98, 430(2001).
H.S. Fang, L.P. Li, G.S. Li, Chem. Lett., 36, 436 (2007).
P. Deniard, A.M. Dulac, X. Rocquefelte, V. Grigorova, O. Lebacq,A. Pasturel, S. Jobic, J. Phys. Chem. Solids, 65, 229 (2004).
B.M. Azmi, T. Ishihara, H. Nishiguchi, Y. Takita, J. Power Sources, 146, 525(2005).
B.M. Azmi, H.S. Munirah, T. Ishihara, Y. Takita, Ionics, 11, 402 (2005).
B.M. Azmi, T. Ishihara, H. Nishiguchi, Y. Takita, Electrochemistry, 71, 1108(2003).
J. Barker, M.Y. Saidi, J.L. Swoyer, J. Electrochem. Soc., 151, A796 (2004).
A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc., 144, 188(1997).
Li Yun-Jiao, Hong Liang-Shi, Xi Xiao-Ming. Mining and Metallurgical Engtneering(Kuangye Gongcheng), 26(5), 45~51 (2006)。
Xu Na, Huang Shu-Ye, Lin Bin-Mei, et a1.Journal of Shanghai University of Electric Power (Shanghai Dianli Xueyuan Xnebao), 22(3), 270~272 (2006)。
付鵬,“磷酸鹽體系釩基鋰離子電池正極材料的合成與性能研究”,碩士論文,華南理工大學材料物理與化學工程研究所 (2007)。
Shi Zhicong, Yang Yong, J. Progress in Chemistry, 17(4), 604 (2005)
Morgan D, Ceder G Saidi MY et a1. Experimental and computational study of the structure and electrochemical properties of LixM(PO4)3 compounds with the monoclinic and rhombohedral. Chem. Mater., 14, 4684~4693 (2002).
Burba C M, Fmch IL Vibrational spectroscopic studies of monoclinic and rhombohedral Li3V2(PO4)3, Solid State Ionics, 177, 3445~3454 (2007).
Gaubicher J, Wurm C, Goward G, et a1. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chem. Mater., 12, 3240~3242 (2000).
Y. m S C, Grondey H, Strobel et a1. Charge ordering in lithium vanadium phosphate” electrode materials for lithium-ion batteries” , J. Am. Chem. Soc. 125, 326~327 (2003).
Y. m S C, Grondey H, Strobel P, et a1. “Electrochemical property structure relationships in monoclinic Li3­yV2(PO4)3”, J. Am. Chem. Soc. 125, 10402~10411 (2003).
Saidi M Y, Barker J, Huang H, et a1.“Performance characteristics of Lithium vanadium phosphate as a cathode material for lithium-ion batteries”, J. Power Sources, 119~121, 266-272 (2003).
Cushing B L, Goodenoughl J B, “Li2NaV2(PO4)3:A 3.7V lithium-insertion cathode with the rhombohedral NASICON structure”, J. Solid State Chem. 162, 176-181 (2001).
Barker J, Saidi M Y, Swoyer J L, “A carbothermal reduction method for the preparation of electroactive materials for lithium ion applications”, J. Electrochem. Soc. 150(6), A684~A688 (2003).
Li Y Z, Zhou Z, Gao X P, et a1. “A promising sol-gel route based on citric acid to synthesize Li3V2(PO4)3〺carbon composite material for lithium ion batteries”, Electrochim. Acta, 52, 4922-4926(2007).
Li Y Z, Zhou Z, Ren M M, et a1. “Electrochemical performance of nanocrystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol-gel method”, Electrochim. Acta, 52, 4922-4926(2006).
Patoux S, Wurm C, Morcette M, et a1. “A comparative structure and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3“, J. Power Source, 119~121: 278~284 (2003).
Huang H, Yin S C, Kerr T, et al. “Nanostructuure composition: A high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries”, Adv. Mater., 14, 21, 1525~1528 (2002).
Azmi B M, Ishihara T, Nishiguchi H, et a1. “Cathodic performance of VOPO4 with various crystal phases for Li ion rechargeable battery”, Electrochim. Acta, 48, 165~170 (2002).
Lim S C, Vaughey J T W, Harrison T A, et a1. “Redox transformations of simple vanadium phosphates: the synthesis of ε-VOP04”, Solid State Ionics, 84, 219~226 (1996).
Dupre N, Wallez G, Gaubicher J, et a1. “Phase transition induced by lithium insertion in αI- and αII-VOPO4” J. Solid State Chem., 177: 2896~2902 (2004).
Dupre N, Gaubicher J, Mercier T L, et a1. “Positive electrode materials for lithium batteries based on VOPO4”, Solid State Ionics, 140: 209-221(2001).
Song Y, Peter Y Z, Whittingham S, “ε- VOPO4: electrochemical synthesis and enhanced cathode behavior”, J. Electrochem. Soc., 152 (4): A721~A728(2005).
Ayyappana P, Ramanana A, Joyb P A, “A convenient hydrothermal route for the synthesis of MxVOPO‧yH2O (M=Na and K). Solid State lonics, 107:53-57 (1998).
Azmi B M, I Tatsumi, N Hiroyasu, et a1. “Cathodic performance of VOPO4 with various crystal phases for Li ion rechargeable battery”, Electrochimical Acta, 48: 165~170 (2002).
Amoros P, Marcos M D, Roca M, et a1. “Crystal structure of a new polytype in the V-P-O system: is ω-VOPO4 a dynamically stabilised metastable network?” , J. Phy. Chem. Solids, 62:1393~1399 (2001).
Kerr T A, Gaubicher J, Nazarz L F, “ Highly reversible Li insertion at 4 V in ε- VOPO4/α-LiVOPO4 cathodes”, Electrochem. Solid-State Lett., 3(10):460, 62(2000).
Bustam M A, Tatsumi I, Hiroyasu N et al, Jouneral of Power Sources, 273:119~121(2003).
Bustam M A, Tatsumi I, Hiroyasu N et al, J. Electrochimica Acta, 48:165(2002).
Gaubicher J, Mercier T L, Chabre Y et a1. “Li/β-VOPO4: A new 4 V system for lithium batteries”, J. Electrochem. Soc., 146(1 2):4375-4379 (1999).
Azmia B M, Ishihara T, Nishiguchi H, et a1. “LiVOPO4 as a new cathode materials for Li-ion rechargeable battery”, J. Power Sources, 146:525-528 (2005).
Bustam M A, Hasanaly S M, Ishihara T, et a1. ”Optimized LiVOPO4 for cathodes in Li-ion rechargeable batteries”, Ionics, 11:402, 405(2005).
Barker J, Saidi M Y, Swoyer J L, “Electrochemical properties of beta-LiVOP04 prepared by carbothermal reduction”, J. Electrochem. Soc.,151(6):A796~A800(2004).
Barker J, Saidi M Y, Swoyer J L, “Electrochemical insertion properties of the novel lithium vanadium fluorophosphates, LiVPO4F”, J. Electrochem. Soc., 150 (10): 1394~1398 (2003).
Barker J, Saidi M Y, Swoyer J L, “A comparative investigation of the Li insertion properties of the novel fluorophosphates phase, NaVPO4F and LiVPO4F”, J. Electrochem. Soc., 151(10): A1670~A1779 (2004).
Barker J, Gover R K B, Burns P, et al. “Performance evaluation of lithium vanadium fluorophosphates in lithium metal and lithium-ion cells”, J. Electrochem. Soc., 152(9):A1776~l779 (2005).
Barker J, Gover R K B, Burns P, et a1. “A symmetrical lithium ion cell based on lithium vanadium fluorophosphates,LiVPO4F”, Electrochem. Solid. State Lett., 8(6): A285~A287 (2005).
Li Y Z, Zhou Z, Gao X P, et a1. “A novel sol-gel method to synthesize nanocrystalline LiVPO4F and its electrochemical Li intercalation performances”, J. Power Sources, 160:633-637 (2006).
Gwenaëlle R, Calin W, Mathieu M, et a1. “Christian crystal structure of a new vanadium (IV) diphosphate: VP2O7, prepared by lithium extraction from Li VP2O7”, J. Inorg. Mater., 3:88 1-887 (2001).
Uebou Y S, Okada S, Egashira M, et a1. “Cathode properties of pyrophosphates for rechargeable lithium batteries”, Solid State Ionics, 148:323~328 (2002).
Barker J, Gover RKB, Bums P, et a1. “LiVP2O7: a viable lithium-ion cathode material? “, Electrochem. Solid-State Lett., 8: A446~A4448 (2005).
劉雲霞,鋰離子電池正極材料磷酸釩鋰的合成及其改性研究,華中師範大學物理化學工程研究所,碩士學位論文 (2008)。
K. H. LII, L. F. MAO, J. Solid State chemistry, in press.
M. L. F. Phillips, W. T. A. Harrison, T. E. Gier, G. D. Stucky, G. V. Kulkarni, and J. K. Burdett, Inorg. Chem. 29, 2158 (1990).
O’Donoghue, M., ” A guide to Man-made Gemstones”, Great Britain: Van Nostrand Reinhold Company. pp. 40–44 (1983).
郭炳焜,徐徽,王先友等,“鋰離子電池”,中南大學出版社,長沙 (2002)。
M. M. Ren, Z. Zhou, X. P. Gao, “LiVOPO4 as an anode material for lithium ion batteries”, J. Appl Electrochem. 40: 209~213 (2010).
M.M. Ren, Z. Zhou, L.W. Su, X.P. Gao, “LiVOPO4: A cathode material for 4V lithium ion batteries”, Journal of Power Sources (2008).
Bustam M. Azmia, Tatsumi Ishihara, Hiroyasu Nishiguchi, Yusaku Takita, ” LiVOPO4 as a new cathode materials for Li-ion rechargeable battery”, Journal of Power Sources 146, 525~528 (2005).
Yong Yang, Haisheng Fang, Jing Zheng, Liping Li, Guangshe Li, Guofeng Yan,” Towards the understanding of poor electrochemical activity of triclinic LiVOPO4: Experimental characterization and theoretical investigations”, Solid State Sciences 10, 1292~1298 (2008).
Kenta Nagamine, Tsuyoshi Honma, Takayuki Komatsu,“Selective Synthesis of Lithium Ion-Conductive β-LiVOPO4 Crystals via Glass–Ceramic Processing”, J. Am. Ceram. Soc., 91 [12] 3920–3925 (2008).
何則強,張來禮,熊利芝,唐安平等,“新型鋰離子電池正極材料LiVOPO4的製備與表徵”,無機化學學報,Vol.24 No.2,303~306 (2008)。
熊利芝,梁凱,侯慧,何則強,” LiVOPO4/C的溶液沉積-熱解法製備與表徵”,吉首大學學報(自然科學版),Vol.31 No.6 (2010)。
楊改,應皆榮,高劍等,” 釩的聚陰離子型鋰離子電池材料研究進展 ”,稀有金屬材料與工程,Vol.37 No.5 (2008)。
任慢慢,釩系磷酸鹽鋰離子二次電池材料的製備與電化學性能研究,南開大學無機化學工程研究所,博士學位論文 (2008)。
Lian W., Feng W., Chuan W., Ying B., Shi C., Study on β-LiVOPO4 Synthesized by Microwave Sol-gel Route, 北京理工大學化學工程研究所,碩士倫文(2009)
K. H. Lii, C. H. Li, C. Y. Cheng, S. L. Wang,” Hydrothermal Sysnthesis, Structure, and Magnetic Properties of a New Polymorph of Lithium Vanadyl(IV) Orthophate: β-LiVOPO4”, J. Solid State Chemistry, 95, 352~359 (1991).
Kuppan Saravanan, Hwang Sheng Lee, Mirjana Kuezma, Jagadese J Vittal, Palani Balaya, “Hollow α-LiVOPO4 sphere cathodes for high energy Li-ion battery application” J. Mater. Chem., 21, 10042 (2011).
熊利芝,梁凱,何則強,” 鋰離子在LiVOPO4中的擴散係數的測定”,吉首大學學報(自然科學版),Vol.32 No.1 (2011)。
薛富盛,呂福興,吳宗明等,“掃瞄式電子顯微鏡實作訓練教材”,台北:五南圖書出版公司, (2009)。
論文全文使用權限:不同意授權