現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以溶膠凝膠法製備含鍶之三鈣矽酸鹽及其氫氧基磷灰石複合材料 [以論文名稱查詢館藏系統]
論文英文名稱:Study of Tricalcium Silicate Doped with Strontium Prepared through a Sol-gel Process and Its Composite with Hydroxyapatite [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:99
出版年度:100
中文姓名:范貴盛
英文姓名:Kuei-Sheng Fan
研究生學號:98738054
學位類別:碩士
語文別:中文
口試日期:2011-07-13
論文頁數:90
指導教授中文名:鍾仁傑
口試委員中文名:謝明發;方旭偉;林忻怡
中文關鍵詞:三鈣矽酸鹽溶膠凝膠法生物活性氫氧基磷灰石骨填補
英文關鍵詞:Tri-calcium SilicateStrontiumSol-gel ProcessBioactiveHydroxyapatiteBone Restoration
論文中文摘要:本研究我們以溶膠凝膠法合成了一系列含鍶(SrxCa3-xSiO5, X= 0.0075 to 0.06)的三鈣矽酸鹽(Ca3SiO5, C3S),並對材料進行固化時間、結晶型態、表面結構、機械性質等量測,將材料置於人工模擬體液中養護,並評估離子釋放和其固化行為,最後進行細胞實驗,以評估材料之生物相容性。實驗中,我們將粉末與10 wt% NaH2PO4溶液混合形成一漿狀材料,結果顯示操作時間均在10分鐘以內,其中Sr0.015Ca2.985SiO5 漿料有最短的固化時間約43分鐘; Sr0.0525Ca2.9475SiO5漿料固化時間為69分鐘,養護14天後有最高的機械強度約42 MPa,在人工模擬體液中,磷灰石會迅速在材料表面上沉積,顯示材料具有良好的表面生物活性,最終 pH值為11.7,鍶離子釋放達135.6 ppm;塊材浸泡液(25 mg/mL) 處理之 L929 細胞存活率達66%,10 mg/mL 可達98%。而後將Sr0.0525Ca2.9475SiO5 與氫氧基磷灰石(HAp)以3:1重量比藉由二階段溶膠凝膠法製成一含鍶的鈣磷矽複合材料,成功的將pH值降至8.9、固化時間43.6分鐘,並有效提升塊材浸泡液(25 mg/mL)處理之 L929細胞存活率達107%。故本實驗製備的(75 wt%)Sr0.0525Ca2.9475SiO5/(25 wt%)HAp在骨填補的應用上有很大的潛力。
論文英文摘要:In this study, we successfully prepared tricalcium silicate (Ca3SiO5, C3S) doped with a series of strontium (SrxCa3-xSiO5, X= 0.0075 to 0.06) through a sol-gel process. The materials properties including setting property, crystallinity, microstructure and mechanical strength were characterized. Incubation in simulated body fluid was carried out to evaluate the ions releasing and curing behaviors in liquid. Cytotoxcity of the setting block was evaluated with L929 cell-line cultivation. To form a self-setting slurry, the powders were mixed with 10 wt% NaH2PO4 solution. The results showed that the working time of prepared slurries were all less than 10 minutes. Slurry of Sr0.015Ca2.985SiO5 had shortest setting, around 43 minutes. Slurry of Sr0.0525Ca2.9475SiO5 had 69 min setting time, however, and the highest compressive strength 42 MPa after 14 days curing. Results of simulated body fluid incubation study showed that apatite would rapidly form onto the materials, which indicated the well surface bioactivity. The final pH value was 11.7 with high Sr2+ release 135.6 ppm. The cell viability of L929 cell-line was 66% with the treatment of extraction solution using setting block 25 mg/mL, and 98% for 10 mg/mL. Furthermore, a Ca-P-Si composite composed of Sr0.0525Ca2.9475SiO5/Hydroxyapatite (weight ratio of 3) was prepared through a two steps sol-gel process. We successfully decreased pH value and setting time to 8.9 and 43.6 min, respectively. The cell viability of L929 cell-line raised to 107% for 25 mg/mL. The prepared (75 wt%)Sr0.0525Ca2.9475SiO5/(25 wt%)HAp has great potential in bone restoration applications.
論文目次:摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 1
第二章 文獻回顧 3
2-1 骨骼重建機制 3
2-2 生醫材料簡介 4
2-3 鍶(Strontium) 6
2-3-1 鍶的來源 6
2-3-2 鍶的功用 7
2-3-3 鍶的缺點 8
2-3-4 雷奈酸鍶(Strontium ranelate) 8
2-4 三鈣矽酸鹽(Ca3SiO5,C3S) 9
2-4-1 三鈣矽酸鹽的功能與缺點 10
2-4-2 三鈣矽酸鹽的水合(Hydration)機制 10
2-5 氫氧基磷灰石(HAp) 13
2-6 溶膠凝膠法(Sol-gel)原理 13
第三章 實驗方法 15
3-1 材料準備 16
3-1-1 製備Sr/C3S與SrC3S + HAp材料準備 16
3-1-2 細胞毒性測試材料準備 19
3-2 材料製備 21
3-2-1 製備Sr/C3S粉末 21
3-2-2 製備SrC3S + HAp粉末 21
3-2-3 製備Sr/C3S與SrC3S + HAp水合物 22
3-3 材料性質分析 24
3-3-1 工作與固化時間的量測 24
3-3-2 X光繞射儀(X-ray diffraction, XRD) 25
3-3-3 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer, FTIR) 26
3-3-4 感應偶合電漿原子發射光譜儀(Inductively Coupled Plasma-Atomic Emission Spectroscopy, ICP-AES) 27
3-3-5 酸鹼值計量器(pH meter) 29
3-3-6 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 30
3-3-7 萬能材料試驗機(Mechanical testing system, MTS) 31
3-3-8 細胞生物相容性測試(in vitro) 32
第四章 結果與討論 34
4-1 工作與固化時間的量測 34
4-2 晶格結構分析 36
4-3 表面結構分析 46
4-4 分子結構分析 61
4-5 酸鹼值變化 64
4-6 離子釋出行為 66
4-7 機械強度測試 69
4-8 細胞毒性測試 71
4-9 SrC3S + HAp 複合材料性質分析 74
第五章 結論 84
第六章 參考資料 85
附錄-中英文對照表 90
論文參考文獻:[1] Zhao WY, Chang J, Wang JY, Zhai WY, Wang Z. In vitro bioactivity of novel tricalcium silicate ceramics. Journal of Materials Science: Materials in Medicine. 2007;18(5):917-23.
[2] Phan PV, Grzanna M, Chu J, Polotsky A, El-Ghannam A, Van Heerden D, Hungerford DS, Frondoza CG. The effect of silica-containing calcium-phosphate particles on human osteoblasts in vitro. Journal of Biomedical Materials Research Part A. 2003;67A(3):1001-8.
[3] Zhao WY, Chang J. Two-step precipitation preparation and self-setting properties of tricalcium silicate. Materials Science & Engineering C-Biomimetic and Supramolecular Systems. 2008;28(2):289-93.
[4] Lerner UH. Bone Remodeling in Post-menopausal Osteoporosis. Journal of Dental Research. 2006;85(7):584-95.
[5] 洪敏雄、林峰輝、王盈錦,生醫陶瓷技術手冊(下) 中華民國產業科技發展協進會 ,1994。
[6] Nielsen SP. The biological role of strontium. Bone. 2004;35(3):583-8.
[7] Fleischer M. Recent estimates of the abundances of the elements in the earth’s crust. Geochimica et Cosmochimica Acta. 1953;28(8):1273-85.
[8] Morohashi T, Sano T, Harai K, Yamada S. Effects of strontium on calcium metabolism in rats: II. Strontium prevents the increased rate of bone turnover in ovariectomised rats. Japanese Journal of Pharmacology. 1995;68(2):153-9.
[9] Ni GX, Lin JH, Chiu PKY, Li ZY, Lu WW. Effect of strontium-containing hydroxyapatite bone cement on bone remodeling following hip replacement. Journal of Materials Science: Materials in Medicine. 2010;21(1):377-84.
[10] Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone. 2001;29(2):176-9.
[11] Looney M, O’Shea H, Redington W, Kelly G, Boyd D. High-temperature X-ray analysis of phase evolution in Sr-doped zinc-silicate glasses. Journal of Non-Crystalline Solid. 2011;357(10):2097-102.
[12] Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG, Stevens MM. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 2010;31(14):3949-56.
[13] Rosskopfova O, Galambos M, Rajec P. Study of sorption process of strontium on the synthetic hydroxyapatite. Journal of Radionalytical and Nuclear Chemistry. 2011;287(3):715-22.
[14] Wong CT, Lu WW, Chan WK, Cheung KMC, Lukl KDK, Lu DS, Rabie ABM, Deng LF, Leong JCY. In vivo cancellous bone remodeling on a Strontium containing hydroxyapatite (SrHA) bioactive cement. Journal of Biomedical Materials Research-Part A. 2004;68A(3):513-21.
[15] Kannan S, Goetz-Neunhoeffer F, Neubauer J, Pina S, Torres PMC, Ferreira JMF. Synthesis and structural characterization of strontium and magnesium co-substituted β-tricalcium phosphate. Acta Biomaterialia. 2010;6(2):571-6.
[16] Braux J, Velard F, Guilaume C, Bouthors S, Jallot E, Nedelec JM, Laurent-Maquin D, Laquerruere P. A new insight into the dissociating effect of strontium on bone resorption and formation. Acta Biomaterialia. 2011;7(6):2593-603.
[17] Zhang W, Shen Y, Pan H, Lin K, Liu X, Darvell BW, Lu WW, Chang J, Deng L, Wang D, Huang WH. Effects of strontium in modified biomaterials. Acta Biomaterialia. 2011;7(2):800-8.
[18] Li YF, Li Q, Zhu SS, Luo E, Li JH, Feng G, Liao YM, Hu J. The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials. 2010;31(34):9006-14.
[19] Wu C, Ramaswamy Y, Kwik D, Zreiqat H. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials. 2007;28(21):3171-81.
[20] Morohashi T, Sano T, Yamada S. Effects of strontium on calcium metabolism in rats:I. A distinction between pharmacologic and toxic doses. Japanese Journal of Pharmcology. 1994;64(3):155-62.
[21] Cabrera WE, Schrooten I, De Broe ME, Dhaeses PC. Strontium and Bone. Journal of Bone and Mineral Research. 1999;14(5):661-8.
[22] Wan YM, Wang JY, Wang WM, Li W. Effect of strontium ranelate on bone resorption. Journal of Clinical Rehabilitative Tissue Engineering Research. 2008;12(50):9993-6.
[23] Baron R, Tsouderos Y. In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. European Journal of Pharmacology. 2002;450(1):11-7.
[24] 肖定全,陶瓷材料,新文京開發出版有限公司。
[25] Kendler DL. Strontium ranelate-Data on vertebral and nonvertebral fracture efficacy and safety: Mechanism of action, Current Osteoporosis Reports. 2006;4(1):34-9.
[26] Zhao WY, Wang JY, Zhai WY, Wang Z, Chang J. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials. 2005;26(31):6113-21.
[27] Hung ZG, Chang J. Novel Tricalcium Silicate/Monocalcium Phosphate Monohydrate Composite Bone Cement. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2007;82B(2):352-9.
[28] Huan Z, Chang J. Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements. Acta Biomaterialia. 2007;3(6):952-60.
[29] 潘時正、曾迪華,下水污泥灰渣特性及應用於水泥沙漿之研究,國立中央大學碩士論文,民國91年。
[30] Bullard JW, Flatt RJ. New insights into the effect of calcium hydroxide precipitation on the kinetics of tricalcium silicate hydration. Journal of the American Ceramic Society. 2010;93(7):1894-903.
[31] Kannan S, Vieira SI, Olhero SM, Torres PMC, Pina S, Silva OABDE, Ferreira JMF. Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures. Acta Biomaterialia. 2011;7(4):1835-43.
[32] Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition. 2002;41(17):3130-46.
[33] Vallet-Regi M, Gonzalez-Calbet JM. Calcium phosphates as substitution of bone tissues. Progress Solid State Chemistry. 2004;32(1-2):1-31.
[34] Jillavenkatesa A, Condrate Sr. RA. Sol-gel processing of hydroxyapatite. Journal of Materials Science. 1998;33(16):4111-9.
[35] Saboori A, Rabiee M, Moztarzadeh F, Sheikhi M, Tahriri M, Karimi M. Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass. Materials Science and Engineering C. 2009;29(1):335-40.
[36] Zhao WY, Chang J. Sol-gel synthesis and in vitro bioactivity of tricalcium silicate powders. Materials Letters. 2004;58(19):2350-3.
[37] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907-15.
[38] Omotoso OE, Ivey DG, Mikula R. Containment mechanism of trivalent chromium in tricalcium silicate. Journal of Hazardous Materials. 1998;60(1):1-28.
[39] Lin Q, Lan XH, Li YB, Yu YH, Ni YR, Lu CH, Xu ZZ. Anti-washout carboxymethyl chitosan modified tricalcium silicate bone cement: Preparation, mechanical properties and in vitro bioactivity. Journal of Materials Science: Materials in Medicine. 2010;21(12):3065-76.
[40] 談混凝土的中性化與白華現象,http://www.twce.org.tw/info/%E6%8A%80%E5%B8%AB%E5%A0%B1/197-2-2.htm。
[41] 黃士維、鍾仁傑,以溶膠凝膠法製備鈣磷矽混合物,國立台北科技大學碩士論文,民國99年。
[42] Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. Journal of Materials Science: Materials in Medicine. 1997;8(1):1-4.
[43] Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. Journal of Biomedical Materials Research. 2002;59(4):697-708.
[44] Slosarczyk A, Paszkiewicz Z, Paluszkiewicz C. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. Journal of Molecular Structure. 2005;744(Sp. Iss. SI):657-61.
[45] Merry JC, Gibson IR, Best SM, Bonfield W. Synthesis and characterization of carbonate hydroxyapatite. Journal of Materials Science: Materials in Medicine. 1998;9(12):779-83.
論文全文使用權限:不同意授權