現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以溶膠凝膠法製備鋰離子電池Li2FeSiO4正極材料 [以論文名稱查詢館藏系統]
論文英文名稱:The Preparation of Lithium-ion Battery of Li2FeSiO4 Cathode Materials by Sol-gel Method [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:101
出版年度:102
中文姓名:陳澤榆
英文姓名:Ze-Yu Chen
研究生學號:100738031
學位類別:碩士
語文別:中文
口試日期:2013-06-28
論文頁數:82
指導教授中文名:蔡德華
指導教授英文名:Teh-Hua Tsai
口試委員中文名:郭文正;張裕祺;方旭偉
口試委員英文名:Wen-Jeng Guo;Yu-Qi Zhang;Hsu-Wei Fang
中文關鍵詞:溶膠凝膠法Li2FeSiO4鋰離子電池正極材料
英文關鍵詞:Sol-gelLi2FeSiO4Lithium-ion batteryCathode material
論文中文摘要:對於鋰離子電池中正極材料研究,探討具橄欖石結構的Li2FeSiO4正極材料之製備,Li2FeSiO4具有高安全性、價格低、無環境汙染、可耐大電流放電、材料本身具有兩個活性鋰等優點,然而由於晶體結構的固有限制,造成Li2FeSiO4有著材料具有極低的電子導電度及鋰離子擴散速率,這為限制材料應用性最大的障礙。
本研究係以溶膠凝膠法合成材料Li2FeSiO4/C,首先以不同碳源添加劑(果糖、檸檬酸、抗壞血酸及葡萄糖)進行合成;第二步則選取果糖為添加劑,改變煅燒溫度、煅燒升溫速率、煅燒維持時間、碳源濃度及pH值,尋求製備出材料結晶性最佳之條件;第三步將所得材料進行電化學性能分析。
實驗結果顯示:製備Li2FeSiO4/C複合正極材料,以果糖作為碳源,可得較佳之結晶性,而材料粒徑分布約為450nm。使用較高的果糖濃度,防止粒子間團聚效果較佳;較高的煅燒溫度與4℃/min的升溫速率可使材料結晶性較為明顯,合成溫度太低則易有雜相產生;改變酸鹼值,隨氨水加入量的增加,降低了溶膠裡晶核的形成速度,而且也降低團聚的情形。
以拉曼光譜分析判定材料中碳之石墨化程度,以果糖作為碳源添加劑而其ID/IG值為0.887;由電化學性能測試可知,材料於第一次充電電量為147mAh/g於0.05C條件下操作。
論文英文摘要:Lithium iron silicate (Li2FeSiO4) is promising alternative cathode material because of its low material cost, superior thermal safety, environmental friendliness, long operational life and plausible extraction of more than one Li-ion per formula unit. However, because of its lattice structure, it has extremely low electronic conductivity and Li-ion diffusion coefficient, which has been overcome.
In this study, we tried to use sol-gel method to synthesize Li2FeSiO4/C and searched for optimal synthetic process. It was synthesized using D-Fructose as carbon source, and effort of doping amount, calcination time, calcination temperature, and pH on Li2FeSiO4/C’s performance were systematically researched, and assembled coin cells to test the electrochemical performance.
The result shows that particle size distribution is about 450nm , and using higher concentration of fructose, to prevent aggregation of inter-particle. Higher calcination temperature and 4℃/min heating rate allows the crystalline obvious, and low temperature generated impurity phase. It exhibit first charge capacity of 147mAh/g
at 0.05C.
論文目次:摘 要 i
ABSTRACT ii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 2
第二章 文獻回顧 3
2.1 鋰金屬電池介紹 3
2.2 鋰離子二次電池之組成 4
2.3 鋰離子二次電池之工作原理 7
2.4 正極材料的介紹 8
2.4.1 矽酸鋰鹽類Li2MSiO4結構及性質 9
2.4.2 矽酸鋰亞鐵Li2FeSiO4電化學性能 11
2.4.3 矽酸鋰亞鐵Li2FeSiO4製備方法 12
2.4.4 矽酸鋰亞鐵Li2FeSiO4改質研究 16
2.5 溶膠-凝膠法 19
第三章 實驗方法及原理 21
3.1 實驗藥品及材料 21
3.2 儀器設備 24
3.3 正極材料合成流程 26
3.4 材料鑑定分析 29
3.4.1 X光繞射(X-ray diffractiometer, XRD)分析 29
3.4.2 掃描電子顯微鏡(Scanning eletron microscopy, SEM) 29
3.4.3 動態光散射 (Dynamic light scattering, DLS)量測 29
3.4.4 拉曼光譜(Raman spectroscopy)鑑定 30
3.4.5 熱重分析儀(Thermogravimetric analysis; TGA )量測 30
3.5 材料電化學特性分析 30
3.5.1 正極極片製備及鈕扣電池組裝 30
3.5.2 電池性能測試 31
3.5.3 循環伏安分析 31
3.5.4 交流阻抗分析 31
第四章 結果與討論 33
4.1 XRD繞射分析 33
4.1.1 改變添加劑種類 34
4.1.2 比較前驅物處理程序 35
4.1.3 煅燒溫度 36
4.1.4 果糖濃度 37
4.1.5 溫度上升速率 38
4.1.6 煅燒維持時間 40
4.1.7 改變pH值 40
4.1.8 改變煅燒環境 41
4.2 SEM形態分析 42
4.2.1 改變添加劑種類 42
4.2.2 比較前驅物處理程序 44
4.2.3 煅燒溫度 46
4.2.4 果糖濃度 47
4.2.5 溫度上升速率 50
4.2.6 煅燒維持時間 51
4.2.7 改變pH值 53
4.3 SEM/EDX 定量比例分析 55
4.3.1 煅燒溫度 55
4.3.2 果糖濃度 57
4.4 DLS 粒經分析 60
4.5 TGA熱損失分析 65
4.6 Raman光譜鑑定 66
4.7 材料電化學性質分析 67
4.7.1 充放電測試 68
4.7.2 循環伏安分析 69
4.7.3 電化學阻抗分析 70
第五章 結論 72
參考文獻 75
附錄 79
論文參考文獻:[1] 陳金銘,『下世代高能量鋰電池與材料技術趨勢』,工業材料雜誌,302期,2012。
[2] 涂慧娟,碳源粒徑對磷酸亞鐵鋰/碳鋰離子電池複合陰極材料之影響,碩士論文,國立中央大學化學工程與材料工程研究所,桃園,2008。
[3] Nyten, A., et al., "Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS," Journal of Materials Chemistry, vol. 16, no. 34, 2006, pp.3483-3488.
[4] Dominko, R., "Li2MSiO4(M= Fe and/or Mn) cathode materials, " Journal of Power Sources, vol. 184, no. 34, 2008, pp. 462-468.
[5] Nyten, A., et al., "Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material, " Electrochemistry communications, vol. 7, no. 2, 2005, pp. 156-160.
[6] 吳宇平,鋰離子電池-應用與實踐,北京:化學工業出版社,2004。
[7] Boulineau, A., et al., " Polymorphism and structural defects in Li2FeSiO4," Dalton Transactions, vol. 39, no. 27, 2010, pp. 6310-6316.
[8] 張秋美、施志聰、李益孝,『氟磷酸鹽及正矽酸鹽鋰離子電池正極材料研究進展』,物理化學學報,第二十七卷,第二期,2011,第267-274頁。
[9] 楊卓蒼,電感耦合電漿輔助沈積Li-Ni-O薄膜電極及其臨場改質之研究,碩士論文,逢甲大學材料科學研究所,2003。
[10] 楊金龍,改性 Li2FeSiO4/C複合鋰離子電池正極材料的研究,碩士論文,武漢理工大學,2011。
[11] 經濟部技術處,電子材料產業年鑑,工研院IEA,2010。
[12] 朱晏誼,鋰離子電池正極材料LiFePO4的製備與性能研究,碩士論文,國立清華大學材料科學工程學系,新竹,2006。
[13] 李黎明,鋰離子電池正極材料Li2FeSiO4的合成與改性研究,碩士論文,中南大學,2010。
[14] Zheng, Z., et al., "Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries," Journal of Power Sources, vol. 198, 2012, pp. 229-235.
[15] Padhi, A.K., K. Nanjundaswamy, and J.B.d. Goodenough, "Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries," Journal of The Electrochemical Society, vol. 144, no. 4, 1997 , pp. 1188-1194.
[16] Dominko, R., et al.,"Impact of synthesis conditions on the structure and performance of Li2FeSiO4," Journal of Power Sources, vol. 178, no. 2, 2008, pp. 842-847.
[17] Pasquali, M., A. Dell’Era, and P.P. Prosini, "Fitting of the voltage–Li+ insertion curve of LiFePO4," Journal of Solid State Electrochemistry, vol. 13, no. 12, 2009, pp. 1859-1865.
[18] Aravindan, V., et al., "Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes," Journal of Materials Chemistry, vol. 21, no. 8, 2011, pp. 2470-2475.
[19] Nishimura, S.i., et al., "Structure of Li2FeSiO4," Journal of the American Chemical Society, vol. 130, no. 40, 2008, pp. 13212-13213.
[20] Zhang, P., et al., "Structural properties and energetics of Li2FeSiO4 polymorphs and their delithiated products from first-principles, " Physical Chemistry Chemical Physics, vol. 14, no. 20, 2012, pp. 7346-7351.
[21] Zaghib, K., et al., "Structural, magnetic and electrochemical properties of lithium iron orthosilicate," Journal of power sources, vol. 160, no. 2, 2006, pp. 1381-1386.
[22] Nyten, A., et al., "The lithium extraction/insertion mechanism in Li2FeSiO4," Journal of Materials Chemistry, vol. 16, no. 23, 2006, pp. 2266-2272.
[23] Arroyo-de Dompablo, M., et al., "On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M= Fe, Mn, Co, Ni), " Electrochemistry Communications, vol. 8, no. 8, 2006, pp. 1292-1298.
[24] Dominko, R., "Li2MSiO4 (M= Fe and/or Mn) cathode materials, " Journal of Power Sources, vol. 184, no. 2, 2008, pp. 462-468.
[25] Zhou, F., et al., "The Li intercalation potential of LiMPO4 and Li2MSiO4 olivines with M= Fe, Mn, Co, Ni," Electrochemistry communications, vol. 6, no. 11, 2004, pp. 1144-1148.
[26] Guo, H.-J., et al., "Preparation and characteristics of Li2FeSiO4/C composite for cathode of lithium ion batteries, " Transactions of Nonferrous Metals Society of China, vol. 19, no. 1, 2009, pp. 166-169.
[27] Chen, W., et al., "Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries, " RSC Advances, vol. 3, no. 2, 2013, pp. 408-412.
[28] Zuo, P., et al., "Improved electrochemical performance of nano-crystalline Li2FeSiO4/C cathode material prepared by the optimization of sintering temperature, " Journal of Solid State Electrochemistry, 2013, pp. 1-5.
[29] Peng, C.-l., et al., "Synthesis of Li2Fe0. 9Mn0. 1SiO4/C composites using glucose as carbon source," Journal of Central South University of Technology, vol. 17, no. 3, 2013, pp. 504.
[30] Zheng, Z., et al., "Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries, " Journal of Power Sources, vol. 198, 2012, pp. 229-235.
[31] Aravindan, V., et al., "Adipic acid assisted sol–gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties, " Journal of Materials Chemistry, vol. 20, no. 35, 2010, pp. 7340-7343.
[32] Deng, C., et al., "Characterization of Li2MnSiO4 and Li2FeSiO4 cathode materials synthesized via a citric acid assisted sol─gel method, " Materials chemistry and physics, vol. 120, no. 1, 2010, pp. 14-17.
[33] Gong, Z., et al., "Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process, " Electrochemical and Solid-State Letters, vol. 11, no. 5, 2008, pp. A60-A63.
[34] Yabuuchi, N., et al., "Low-temperature phase of Li2FeSiO4: crystal structure and a preliminary study of electrochemical behavior, " Dalton Transactions, vol. 40, no. 9, 2011, pp. 1846-1848.
[35] Muraliganth, T., K. Stroukoff, and A. Manthiram, "Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M= Mn and Fe) cathodes for lithium-ion batteries, " Chemistry of Materials, vol. 22, no. 20, 2010, pp. 5754-5761.
[36] Dong, P.Z., et al., "Microwave synthesis of Li2FeSiO4 cathode materials for lithium-ion batteries, " Chinese Chemical Letters, vol. 20, no. 8, 2009, pp. 1000-1004.
[37] Xia, Y., M. Yoshio, and H. Noguchi, "Improved electrochemical performance of LiFePO4 by increasing its specific surface area, " Electrochimica acta, vol. 52, no. 1, 2006, pp. 240-245.
[38] Kam, K.C., T. Gustafsson, and J.O. Thomas, "Synthesis and electrochemical properties of nanostructured Li2FeSiO4/C cathode material for Li-ion batteries," Solid State Ionics, vol. 192, no. 1, 2011, pp. 356-359.
[39] Huang, X., et al., "Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery, " Electrochimica Acta, vol. 55, no. 24, 2010, pp. 7362-7366.
[40] Huang, X.B., et al., "Electrochemical Performance of Mg-Doped Li2FeSiO4/C as Cathode Material for Lithium-Ion Batteries, " Applied Mechanics and Materials, vol. 310, 2013, pp. 90-94.
[41] Gao, H., et al., "Intergrown Li2FeSiO4‧LiFePO4-C nanocomposites as high-capacity cathode materials for lithium-ion batteries, " Chemical communications, vol. 310, 2013, pp. 3040-3042.
[42] Bao, L., et al., "Progression of the silicate cathode materials used in lithium ion batteries, " Chinese Science Bulletin, vol. 58, no. 6, 2013, pp. 575-584.
[43] Deng, C., et al., "Synthesis and characterization of Li2Fe0. 97M0. 03SiO4 (M=Zn2+, Cu2+, Ni2+)," Journal of power sources, vol. 196, no. 1, 2011, pp. 386-392.
[44] Kakihana, M., "Invited review “sol-gel” preparation of high temperature superconducting oxides, " Journal of Sol-Gel Science and Technology, vol. 6, no. 1, 1996, pp. 7-55.
[45] Peng, G., et al., "Enhanced electrochemical performance of multi-walled carbon nanotubes modified Li2FeSiO4/C cathode material for lithium-ion batteries, " Journal of Alloys and Compounds, vol. 570, 2013, pp. 1-6.
[46] 向楷雄,鋰離子電池正極材料 L2FeSiO4/C 的合成與性能研究,碩士論文,中南大學,2008。
[47] Yan, Z., et al., "Synthesis and characterization of in situ carbon-coated Li2FeSiO4 cathode materials for lithium ion battery, " Journal of Alloys and Compounds, vol. 511, no. 1, 2012, pp. 101-106.
[48] Dominko, R., et al., "Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials, " Electrochemistry Communications, vol. 8, no. 2, 2006, pp. 217-222.
[49] 劉智敏,鋰離子電池正極材料層狀 LiNixCo1-2xMnxO2 的合成與改性研究,博士論文,中南大學,2009。
[50] Allen, J., T. Jow, and J. Wolfenstine, "Low temperature performance of nanophase Li4Ti5O12, " Journal of power sources, vol. 159, no. 2, 2006, pp. 1340-1345.
[51] Dominko, R., et al., " Porous olivine composites synthesized by sol–gel technique, " Journal of power sources, vol. 153, no. 2, 2006, pp. 274-280.
論文全文使用權限:同意授權於2017-07-11起公開