現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以溶膠凝膠法製備氧化鋅鋁透明導電薄膜及光電特性研究 [以論文名稱查詢館藏系統]
論文英文名稱:The Preparation and Optical and Electrical Properties of Aluminum-doped Zinc Oxide Transparent Conducting Films by Sol-gel Method [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:101
出版年度:102
中文姓名:周涴盈
英文姓名:Wan-Ying Chou
研究生學號:100738042
學位類別:碩士
語文別:中文
口試日期:2013-06-28
論文頁數:73
指導教授中文名:蔡德華
指導教授英文名:Teh-Hua Tsai
口試委員中文名:郭文正;方旭偉;張裕祺
口試委員英文名:Wen-Jeng Guo;Hsu-Wei Fang;Yu-Chi Chang
中文關鍵詞:透明導電薄膜溶膠凝膠法氧化鋅氧化鋅鋁
英文關鍵詞:Transparent Conducting FilmsSol-gel MethodZinc OxideAluminum Doping Zinc Oxide
論文中文摘要:本研究使用溶膠凝膠法結合旋轉塗佈的方式製備透明導電薄膜,利用XRD分析薄膜的結晶特性,使用SEM與AFM觀察薄膜的表面型態及粗糙度,藉由四點探針測量薄膜之片電阻,並以UV/Vis分析材料的透光率;實驗主要分為三大部分來探討,皆以製備出高透光率、低電阻係數的薄膜為目標。
第一部分為氧化鋅薄膜的製備,探討熱處理溫度、環境以及時間對其結晶特性與光電性質之影響。結果顯示當熱前處理溫度在400℃的情況下,薄膜於c軸有優良的成長取向,依序經過400℃熱前處理、500℃熱後處理、500℃燒結處理以及450℃退火處理之ZnO薄膜具有最低之片電阻值,約為0.382kΩ/□,在可見光波長範圍(400~700nm)下平均透光率可達90%,光學能隙為3.27eV。
第二部分為氧化鋅鋁薄膜的製備,探討鋁所添加之比例(Al/Zn=0.25~2.0at%)對其光電特性的影響。結果顯示平均透光率在可見光波長範圍下均可達92%,鋁的添加使光學能隙由3.27eV提升至3.32eV;在鋁與鋅之原子比為0.5%時,可以得到最佳的電性,其電阻係數約為2.24 × 10-3Ω‧cm,透過Scherrer方程式計算出晶粒大小約為19.3nm。
最後一部分則為探討薄膜厚度及溶液之酸鹼性對摻雜0.5at%鋁之氧化鋅薄膜光電特性的影響。利用橢圓偏光儀測量薄膜的厚度,平均一層之厚度約為25nm左右,當厚度達到250nm時具有穩定之電性,其電阻係數約為3.57×10-3 Ω‧cm;透過添加鹽酸將溶液調整至pH6.63具有較佳之光電特性,其電阻係數約為2.94×10-3Ω‧cm,平均光穿透率在可見光波長範圍下可達95%。
論文英文摘要:In this study, transparent conductive film is prepared by sol-gel spin-coating method. The crystal structure was analyzed by using XRD. The surface morphology and roughness were observed by scanning electron microscopy and atomic force microscopy. Using the four-point probe to measure the sheet resistivity of films and utilizing the UV/VIS/NIR spectrometer to measure the transmittance of the materials. The experiment was divided into three parts. The target of this research was prepared the films with high transmittance and low resistivity.
First, the zinc oxide thin films were prepared and the effects of heat treatment conditions on the optoelectronic properties were investigated. The X-ray diffraction studies revealed that thin films have high preferential c-axis orientation in the case of pre-heating temperature at 400℃. It was found that the zinc oxide thin films could achieve the minimum sheet resistivity value of 0.382kΩ/□ after the preheating, post-heating, sintering and annealing process worked at 400℃, 500℃, 500℃,450℃ respectively. The averaged transmittance in the visible light region (400~700nm) was more than 90% and the value of the optical band gap was 3.27eV.
Second, by doping different amounts of aluminum (0.25at%~2.0at%) to improve the electrical conductivity of zinc oxide thin films. The experiment showed that the average transmittance in the visible light region was 92% and the optical band gap increased from 3.27eV to 3.32eV. The atom ratio of Al to zinc oxide at 0.5% could get the best electrical conduction. The electrical resistivity was as low as 2.24 × 10-3Ω‧cm and the grain size was 19.3nm, which was calculated from Scherrer’s equation.
Last, the effects of film thickness and pH value of solution on the optical and electrical properties of 0.5at% aluminum doped zinc oxide thin films were also discussed. The thickness of thin films was measured by ellipsometer. It was found that the average thickness of one layer is about 25nm. It had the electrical resistivity stably when the thickness of thin films deposited over 250nm. The resistivity was 3.57×10-3 Ω‧cm. According to the experimental results, the solution was adjusted to pH 6.63 by adding hydrochloric acid could have the best optoelectronic properties. The resistivity was about 2.94×10-3Ω‧cm and the average transmittance in the visible light region was more than 95%.
論文目次:摘 要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 透明導電薄膜(Transparent conductive oxide, TCO) 3
1.2.1 金屬薄膜 3
1.2.2 金屬氧化物半導體薄膜 3
1.2.3 透明導電薄膜之應用 4
1.3 薄膜的製備技術 6
第二章 文獻回顧 7
2.1 氧化鋅(ZnO)與氧化鋅鋁(AZO) 7
2.1.1 晶體結構 7
2.1.2 導電特性 8
2.1.2.1 載子濃度 (Carrier concentration) 8
2.1.2.2 載子遷移率 (Carrier mobility) 8
2.1.3 光學性質 10
2.1.3.1 Burstein Moss shift效應 10
2.1.3.2 光學能隙的計算 11
2.1.3.3 Figure of Merit的計算 11
2.2 溶膠凝膠法 12
2.2.1 簡介 12
2.2.2 製備原理 13
2.2.2.1 水解(Hydrolysis)與聚縮合(Polymerization) 13
2.2.2.2 凝膠化(Gelation)與熟化(Aging ) 14
2.2.2.3 pH值對溶膠凝膠法的影響 14
2.2.3 塗佈技術 15
2.2.3.1 旋轉塗佈法(Spin coating) 15
第三章 實驗方法與步驟 16
3.1 實驗藥品與儀器 16
3.1.1 實驗藥品 16
3.1.2 實驗器材 18
3.2 薄膜的製備 19
3.2.1 前驅溶液的配製 19
3.2.1.1 ZnO溶凝膠的製備方法 19
3.2.1.2 AZO溶凝膠的製備方法 19
3.2.1.3 改變溶凝膠之pH值 20
3.2.2 基材的清洗 21
3.2.3 塗佈製程 22
3.2.3.1 改變塗佈層數 22
3.2.4 結晶熱處理 23
3.2.4.1 改變熱處理溫度 24
3.2.4.2 改變熱處理環境 25
3.2.4.3 改變熱處理時間 25
3.3 實驗流程 26
3.4 實驗分析項目與方法 27
3.4.1 X光繞射分析儀(X-ray Diffraction, XRD) 27
3.4.2 熱重量分析儀( Thermogravimetric Analyzer, TGA) 28
3.4.3 掃描式電子顯微鏡( Scanning electron microscopy, SEM ) 29
3.4.4 能量分散光譜儀( Energy dispersive spectrometer, EDS ) 29
3.4.5 原子力顯微鏡( Atomic force microscope, AFM ) 29
3.4.6 四點探針(four-point probe) 30
3.4.7 紫外光/可見光分光光譜儀( UV/VIS/NIR spectrometers ) 31
3.4.8 橢圓偏光儀( Ellipsometer ) 31
第四章 結果與討論 32
4.1 氧化鋅 33
4.1.1 溶凝膠之組成分析 33
4.1.2 TGA分析 34
4.1.3 改變熱處理溫度 35
4.1.3.1 改變熱前處理溫度 35
4.1.3.2 改變熱後處理溫度 36
4.1.4 改變熱處理環境 38
4.1.5 改變熱處理時間 39
4.1.6 光學性質分析 40
4.2 氧化鋅鋁(AZO) 42
4.2.1 結晶特性分析 42
4.2.2 表面型貌分析 43
4.2.3 光學特性分析 51
4.2.4 導電特性分析 53
4.3 改變薄膜厚度之研究 55
4.3.1 結晶特性分析 55
4.3.2 光學特性分析 56
4.3.3 導電特性分析 58
4.4 改變pH值之研究 60
4.4.1 結晶特性分析 61
4.4.2 表面形貌分析 63
4.4.3 光學特性分析 65
4.4.4 導電特性分析 66
第五章 結論 68
參考文獻 70
論文參考文獻:[1] 陳俞君,林晉慶,新型透明導電薄膜應用於透射式電容觸控面板,工業材料,第297期,第145頁,2011。
[2] 鉅亨網http://www.cnyes.com/
[3] 江松勳,AZO透明導電膜之製備與特性分析,碩士論文,國立成功大學化學工程研究所,台南,2006。
[4] 李正中,郭倩丞,透明導電薄膜特性及光電元件應用,工程,第84卷,第6期,第19~20頁,2011。
[5] 王慶鈞,王瑞豪,連水養,陳家富,透明導電薄膜之應用概論,機械工業,第338期,第7頁,2011。
[6] 陳品任,以金屬錫為靶材利用脈衝直流磁控濺鍍法鍍製FTO薄膜之研究,碩士論文,國立中央大學光電科學研究所,桃園,2010。
[7] J.Zhang, W. Zhang, E. Zhao, H.J. Jacques, “Study of high-density AZO ceramic target”, Materials Science in Semiconductor Processing, vol.14, pp.189-192, 2011
[8] S. Fernandez, O. deAbril, F.B.Naranjo, J.J.Gandia, “High quality textured ZnO:Al surfaces obtained by a two-step wet-chemical etching method for applications in thin film silicon solar cells”,Solar Energy Materials & Solar Cells, vol.95, pp.2281-2286, 2011
[9] H. Zhu, J.Hupkes, E.Bunte, J.Owen, S.M.Huang, Novel etching method on high rate ZnO:Al thin films reactively sputtered from dual tube metallic targets for silicon-based solar cells,Solar Energy Materials & Solar Cells, vol.95, pp.964-968, 2011
[10] S.E. Pust, J. Worbs, G. Jost, J.Hupkes, “The catalytic effect of iron(III) on the etching of ZnO:Al front contacts for thin-film silicon solar cells”, Solar Energy Materials % Solar Cells, vol.113, pp.106-113, 2013
[11] Lei Li, K.S. Hui, K.N.Hui, H.W. Park, D.H. Hwang, Shinho Cho, S.K. Lee, P.K. Song, Y.R. Cho, Heesoo Lee, Y.G. Son, W. Zhou, “Synthesis and characterization of NiO-doped p-type AZO films fabricated by sol–gel method”, Materials Letters, vol.68, pp.283-286, 2012
[12] 許國銓,科技玻璃─高性能透明導電膜玻璃,材料與社會,第84期,第110~119頁,1993。
[13] 林晉慶,江美靜,陳翔銓,透明導電薄膜材料應用於太陽電池元件之發展,工業材料,第279期,第125-126頁,2010。
[14] 陳仲宜,莊允中,經濟部技術處產業技術知識服務(ITIS)計畫,前瞻奈米鍍膜技術與潛力市場探索,2005。
[15] K.E. Lee, M. Wang, E.J. Kim, S.H. Hahn, “Structural, electrical and optical properties of sol–gel AZO thin films”,Current Applied Physics, vol. 9, pp.683-687, 2008
[16] J. Li, J. Xu, Q. Xu, G. Fang, “Preparation and characterization of Al doped ZnO thin films by sol–gel process”, Journal of Alloys and Compounds, vol. 542, pp.151-156, 2012
[17] C.F. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts “Zinc Oxide : From Fundamental Properties Towards Novel Application”, Springer Verlag, 2010
[18] 陳建林,陳荐,何建軍,氧化鋅透電薄膜及其應用,北京:化學工業出版社,第10~13頁,2011。
[19] 魏嘉瑩,釓摻雜氧化鋅鋁透明導電薄膜特性分析,碩士論文,國立中央大學化學工程與材料工程所,桃園,2009。
[20] 李世鴻,半導體工程原理,全威圖書,台北,2002。
[21] 維基百科http://zh.wikipedia.org/wiki/Wikipedi
[22] P.K. Chakraborty, G.C. Datta, K.P. Ghatak,”The simple analysis of the Burstein–Moss shift in degenerate n-type semiconductors”, Physica B, vol.339, pp.198-203,2003
[23] Shabbir A Bashar, "Study of Indium Tin Oxide (ITO) for Novel Optoelectronic Devices",Ph.D. thesis, King’s College London University of London Department of Electronic Engineering, 1998
[24] L. Gupta, A. Mansingh, P.K. Srivastava, “band gap narrowing and the band structure of tin-doped indium oxide films”, Thin Solid Films, vol.176, pp.33-44, 1989
[25] Roy G. Gordon, “Criteria for Choosing Transparent Conductors”, MRS Bulletin, 2000
[26] “Sol-gel technologies and their products”, http://www.chemat.com/, CHEMAT Technology, Inc.
[27] B.S. Bae, ”Sol-Gel Nano Materials and Process”, KAIST Bulletin, Dept. of Materials Sci. & Eng.
[28] 陳俊光,以溶膠凝膠法合成PMMA/氧化矽複合材料的光譜、熱性質、與型態分析碩士論文,國立中山大學材料科學研究所,高雄,2003。
[29] R.Winter, J.B. Chan, R. Frattini, and J. Jonas,journal of Non-Crystalline Solid, vol.105, pp.214-222, 1988
[30] C.J. Brinker, G.W. Scherer, “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing”, Academic Press, Inc.: New York, 1990
[31] G.G. Valle, P. Hammer, S.H. Pulcinelli, C.V. Santilli, “Transparent and conductive ZnO:Al thin films prepared by sol-gel dip-coating”, Journal of the European Ceramic Society, vol.24, pp.1009-1013, 2004
[32] F. Yu, J. Zhang, Y. Yang, G. Song, “Porous micro-spherical aggregates of LiFePO4/C nanocomposites : A novel and simple template-free concept and synthesis via sol-gel-spray drying method”, Journal of Power Sources, vol.195, pp.6873-6878, 2010
[33] J. Xu, H. Wang, L. Yang, M. Jiang, S. Wei, T. Zhang, “Low temperature growth of highly crystallized ZnO:Al films by ultrasonic spray pyrolysis from acetylacetone salt”, Materials Science and Engineering B, vol.167, pp.182-186, 2010
[34] 黃政儒,溶膠凝膠法製備ZnO摻雜硼透明導電薄膜性質之研究,碩士論文,義守大學材料科學與工程學系,高雄,2005。
[35] “Spin Coat Theory”, Cost Effective Equipment
[36] Z. Bazhan, F.E. Ghodsi, J. Mazloom, “The effect of stabilizer on the optical and structural properties of MgO thin films prepared by sol-gel method”, Guilan University of department of Physics, Faculty of Science, 2011
[37] M. Ohyama, H. Kozuka, T.Yoko, “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution”, Thin Solid Film, vol. 306, pp.78-85, 1997
[38] W.J. Chen, W.L. Liu, S.H. Hsieh, Y.G. Hsu, “synthesis of ZnO:Al Transparent Conductive Thin Films Using Sol-gel Method”, Procedia Engineering, vol. 36, pp.54-61, 2012
[39] C.R. Nave, “Bragg’s law”, Georgia State University of department of Physics and Astronomy,2012
[40] 林麗娟,X光繞射在工業材料分析上之應用,工業材料,第80期,第50~55頁,1993。
[41] 鄭信民,林麗娟,X光繞射應用簡介,工業材料,第181期,第103~105頁,2002。
[42] TGA熱重分析儀原理,科邁斯集團,2007。
[43] 羅聖全,研發奈米科技的基本工具之一電子顯微鏡介紹─SEM,小奈米大世界,2003。
[44] R.A. Wilson, H.A. Bullen, ”Basic Theory Atomic Force Microscopy (AFM)”, Department of Chemistry, Northern Kentucky University, Highland Heights
[45] 林建峯,銀在透明導電氧化膜上光電特性及研究,碩士論文,海洋大學材料工程研究所光電與通訊產業產業研發碩士專班,基隆,2007。
[46] Y.T. Liao, ”four point probe user manual”, NSC Southern Region MEMS Research Center, 2003
[47] W.L. Liu, “Ellipsometer”, NSC Southern Taiwan Nanotechnology Research Center, 2003
[48] Y.K. Tseng, G.J. Gao, S.C. Chien, “synthesis of c-axis preferred orientation ZnO:Al transparent conductive thin films using a novel solvent method”, Thin Solid Films, vol.518, pp.6259-6263, 2010
[49] D. Raoufi, T. Raoufi, “The effect of heat treatment on the physical properties of sol-gel derived ZnO thin films”, Applied Surface Science, vol. 255, pp.5812-5817, 2009
[50] M. Wang, W. Liang, Y. Yang, J. Yang, X. Cheng, S.H. Hahn, E.J. Kim, “Sol-gel derived transparent conducting ZnO:Al thin films : Effect of crystallite orientation on conductivity and self-assembled network texture”, Materials Chemistry and Physics, vol.134, pp. 845-850, 2012
論文全文使用權限:同意授權於2016-07-09起公開