現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以溶膠凝膠法製備鋰離子電池LiCo1/3Ni1/3Mn1/3O2正極材料 [以論文名稱查詢館藏系統]
論文英文名稱:The Preparation of Cathode Materials LiCo1/3Ni1/3Mn1/3O2 for Lithium Ion Batteries by Sol-gel Method [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:101
出版年度:102
中文姓名:鍾睿倫
英文姓名:Jui-Lun Chung
研究生學號:100738041
學位類別:碩士
語文別:中文
口試日期:2013-06-28
論文頁數:105
指導教授中文名:蔡德華
指導教授英文名:Teh-Hua Tsai
口試委員中文名:郭文正;張裕祺;方旭偉
口試委員英文名:Wen-Jeng Guo;Yu-Qi Zhang;Hsu-Wei Fang
中文關鍵詞:溶膠凝膠法LiCo1/3Ni1/3Mn1/3O2正極材料鋰離子電池
英文關鍵詞:Sol-gelLiCo1/3Ni1/3Mn1/3O2Cathode materialLithium-ion battery
論文中文摘要:關於LiCo1/3Ni1/3Mn1/3O2此材料,雖然含有Co這種元素,但是因為含量極少,再加上具有成本低、高電量及結構較穩固的優點,使其得以具有優勢能取代LiCoO2正極材料。本實驗是採用溶膠凝膠法,利用其製備過程上能使材料均勻混和、能在較低的溫度下進行和得到較高的產物純度,以取代常見的高溫固相法及共沉澱法製備LiCo1/3Ni1/3Mn1/3O2。
利用不同酸根所製成的原料,依照固定的比例使用溶膠凝膠法反應,製備LiCo1/3Ni1/3Mn1/3O2的前驅物,再進行高溫煅燒,得其成品。本實驗探討了原料的使用量、鋰源的比例、煅燒溫度、一次煅燒、二次煅燒、煅燒時間、檸檬酸的添加量及pH值得改變對LiCo1/3Ni1/3Mn1/3O2的影響。並利用X光繞射分析、SEM/EDX、TGA、DLS和恆電位電流儀,觀察合成物的結晶、表面形態、熱穩定性、粒徑大小及電化學性能的測試。
經由實驗結果可以得知,利用氫氧化鋰、醋酸鎳、醋酸錳、醋酸鈷和檸檬酸為原料進行合成,並使用高溫煅燒爐、pH6、Li:Co:Ni:Mn =3:1:1:1、檸檬酸100%、二段煅燒(第一段溫度450℃、時間5小時,第二段溫度900℃、時間15小時)合成出LiCo1/3Ni1/3Mn1/3O2正極材料。
論文英文摘要:About this material LiCo1/3Ni1/3Mn1/3O2, although it’s containing Co, but the content is rare, this material has some advantages: low cost, high power and a more solid structure, so that it can replace LiCoO2 cathode material. This experiment using the sol-gel method, and use it to make the material uniformly blended in the preparation process can be carried out in the low temperature and obtain a higher purity of the product, to replace the common high-temperature solid-phase method and the co-precipitation method prepared LiCo1/3Ni1/3Mn1/3O2.
Using different starting materials to make precursor of LiCo1/3Ni1/3Mn1/3O2 in this reaction by sol-gel method, then this powder calcined by high temperature. Finally, we can get the product LiCo1/3Ni1/3Mn1/3O2. In this experimental study, we have some variables. Such as the proportion of materials, temperature, time, pH and citric acid and LiOH we added. We observe the crystallization of the composition, surface morphology, thermal stability, particle size, and electrochemical properties of the test by using X-ray diffraction analysis, SEM / EDX, TGA, DLS and Potentiostat Autolab.
According to the experiments, we could use lithium hydroxide, nickel acetate, manganese acetate, cobalt acetate and citric acid to synthesize LiCo1/3Ni1/3Mn1/3O2 cathode materials. And we selected calciner, pH6, Li:Co:Ni:Mn = 3:1:1:1, citric acid 100%, two step calcinations first step temperature at 450℃and time 5 hours, second step temperature at 900℃and time 15 hours to synthesis LiCo1/3Ni1/3Mn1/3O2 cathode material.
論文目次:目錄
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 2
第二章 文獻回顧 4
2.1 電池簡介 4
2.1.1 一次電池 5
2.1.2 二次電池 6
2.1.3 鋰離子電池 8
2.2 鋰離子材料之結構 9
2.2.1 層狀結構 9
2.2.2 尖晶石結構 10
2.2.3 橄欖石結構 11
2.3 正極材料的製備方法 12
2.3.1 高溫固相法 12
2.3.2 溶膠凝膠法 15
2.3.3 噴霧乾燥法 17
2.3.4 共沉澱法 19
2.3.5 水熱法 21
第三章 實驗設備與方法 26
3.1 實驗藥品 26
3.2 實驗儀器 29
3.3 實驗儀器的介紹 33
3.3.1 X-ray繞射分析儀(XRD) 33
3.3.2 掃描式電子顯微鏡(SEM)與能量分散式X-ray元素分析儀(EDX) 33
3.3.3 原子吸收光譜儀(AAS)[52] 34
3.3.4 熱重分析儀(TGA) 34
3.3.5 動態光散射儀(DLS) 34
3.4 實驗步驟 35
3.4.1 製備正極材料LiCo1/3Ni1/3Mn1/3O2 35
3.4.1.1 確定使用藥品的濃度 35
3.4.1.2 選擇適合的原料 35
3.4.1.3 改變鋰的比例 35
3.4.1.4 改變煅燒溫度 36
3.4.1.5 一段煅燒與二段煅燒 36
3.4.1.6 改變煅燒時間 37
3.4.1.7 改變檸檬酸添加含量 37
3.4.1.8 改變pH值 37
3.4.2 正極極片製備 38
3.4.3 鈕扣型電池組裝 39
3.5 實驗流程 41
3.5.1 正極材料的製備 41
3.5.2 正極材料的分析過程 42
3.5.3 正極極片的製程 43
3.5.4 電解液的製備 43
第四章 結果與討論 44
4.1 XRD晶格結構分析 44
4.1.1 LiCo1/3Ni1/3Mn1/3O2前驅物分析 44
4.1.2 以不同原料製備LiCo1/3Ni1/3Mn1/3O2合成物 45
4.1.3 改變鋰的比例 46
4.1.4 一段煅燒與二段煅燒 47
4.1.5 二段煅燒的最佳時間 50
4.1.6 檸檬酸的添加量 51
4.1.7 pH值的改變量 52
4.2 SEM分析 53
4.2.1 以不同原料製備LiCo1/3Ni1/3Mn1/3O2合成物 53
4.2.2 改變鋰的含量 54
4.2.3 一段煅燒 55
4.2.4 二段煅燒 56
4.2.5 改變後段煅燒時間 58
4.2.6 檸檬酸的添加量 59
4.2.7 pH值的改變量 60
4.3 SEM/EDX分析 62
4.3.1 以不同原料製備合成物之SEM/EDX圖 62
4.3.2 改變鋰的含量之SEM/EDX圖 64
4.3.3 一段煅燒之SEM/EDX圖 68
4.3.4 二段煅燒之SEM/EDX圖 71
4.3.5 改變後段煅燒時間之SEM/EDX圖 75
4.3.6 改變檸檬酸含量之SEM/EDX圖 78
4.3.7 改變pH值之SEM/EDX圖 82
4.4 TGA熱重分析 88
4.5 電化學分析 90
4.6 DLS粒徑分析 95
第五章 結論 96
參考文獻 98
附錄.............................................................................................................................105
論文參考文獻:參考文獻

[1] 張耿豪, “表面修飾球狀 LiNi1/3Co1/3Mn1/3O2 鋰離子陰極材料之研究.”, 國立台灣科技大學化學工程系學位論文, p. 1-144, 2004.
[2] 張忠勝, “鋰離子電池 LiNi1/3Co1/3Mn1/3O2 陰極材料之製程開發與改質研究.“, 中央大學化學工程與材料工程學系學位論文, p. 1-189, 2007.
[3] 游子弘, “以微波-離子交換法快速合成鋰電池 LiNi1/2Mn1/2O2 陰極材料與其電池性能之研究.“, 國立台灣科技大學化學工程系學位論文, p. 1-174, 2006.
[4] “Sony lithium ion battery performance summary.“, JEC Batt. Newsletter, 2(31), 1994.
[5] Luo, X., et al., “Synthesis and characterization of high tap-density layered Li [Ni1/3Co1/3Mn1/3]O2cathode material via hydroxide co-precipitation.“, Journal of power sources,158(1), p. 654-658, 2006.
[6] Lu, Z., D. MacNeil, and J. Dahn, “Layered Li[NixCo1‐2xMnx]O2 Cathode Materials for Lithium‐Ion Batteries.“, ChemInform, 33(7), 2002.
[7] MacNeil, D., Z. Lu, and J. Dahn, “Structure and Electrochemistry of Li[NixCo1− 2xMnx]O2 (0≦x≦1/2).“, Journal of The Electrochemical Society, 149(10), p. A1332-A1336, 2002.
[8] Jouanneau, S., et al., “Morphology and Safety of Li[NixCo1− 2xMnx]O2 (0≦x≦1/2).“, Journal of The Electrochemical Society, 150(10), p. A1299-A1304, 2003.
[9] Hu, C., et al., “Effects of synthesis conditions on layered LiNi1/3Co 1/3Mn1/3O2 positive-electrode via hydroxide co-precipitation method for lithium-ion batteries.“, Trans Nonferrous Met Soc China, 21(1), p. 114-120, 2011.
[10] 徐群杰, et al., “鋰離子電池三元正極材料[Li-Ni-Co-Mn-O]的研究進展.“, 上海電力學院學報, 28(2), p. 143-148, 2012.
[11] Cho, T., et al., “Effect of synthesis condition on the structural and electrochemical properties of Li [Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method.“ Journal of power sources, 142(1-2), p. 306-312, 2005.
[12] 李景虹, “先進電池材料. “ 北京: 化學工業出版社, p. 1-10, 2004
[13] 李日琪, “鋰離子電池陽極碳材料開發. “ , 2000.
[14] Van Schalkwijk, “Lithium rechargeable batteries.“, WESCON/'93. Conference Record, 1993.
[15] 蔡英文,黃炳照, “鋰離子電池陰極材料之研究與發展.“, CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI), 62(2), p. 251-262, 2004.
[16] Winter, M., et al., “Insertion electrode materials for rechargeable lithium batteries. “, Advanced Materials, 10(10), p. 725-763, 1998.
[17] Doughty, D., “Materials issues in lithium ion rechargeable battery technology, “, Sandia National Labs., Albuquerque, NM (United States), 1995.
[18] 黃璽元, “以雙重碳源合成高動力磷酸亞鐵鋰/碳複合陰極材料; Synthesis of High Power LiFePO4/C Cathode Material Using dual Carbon Sources.“, 中央大學化學工程與材料工程學系學位論文, p. 1-111, 2007.
[19] L. Gautier, M.M., J. Scoyer, “Optimized Cathode Material for Lithium-Ion Batteries.“ Progress in Batteries & Battery Materials, 16, p. 30-43, 1997.
[20] Mizushima, K., et al., “Li xCoO2(0< x<-1): A new cathode material for batteries of high energy density.“ Materials Research Bulletin, 15(6), p. 783-789, 1980.
[21] hackeray, M.M., David, E. I. F., Bruce, P. G. and Goodenough, J. Bao, Liying, “Lithium insertion into manganese spinels.“ Mat. Res. Bull, 18, p. 461, 1983.
[22] Liu, H., et al., “Cathode materials for lithium ion batteries prepared by sol-gel methods. “ Journal of Solid State Electrochemistry, 8(7), p. 450-466, 2004.
[23] Padhi, A.K., K. Nanjundaswamy, and J.B.d. Goodenough, Phospho‐olivines as “Positive‐Electrode Materials for Rechargeable Lithium Batteries.“ Journal of The Electrochemical Society, 144(4), p. 1188-1194, 1997.
[24] Cho, T.H. and H.J. Chang, “Preparation and characterizations of Zn2SiO4 : Mn green phosphors.“, Ceramics international, 29(6), p. 611-618, 2003.
[25] 傅晶, 王.許., “納米材料製備技術. “ 北京:化學工業出版社.
[26] Guo, J., et al., “Effect of structural and electrochemical properties of different Cr-doped contents of Li[Ni1/3Mn1/3Co1/3]O2.“ Electrochimica acta, 51(28), p. 6275-6280, 2006.
[27] Wang, L.Q., et al., “Synthesis and electrochemical properties of Mo-doped Li[Ni1/3Mn1/3Co1/3]O2 cathode materials for Li-ion battery.“ Journal of power sources, 162(2), p. 1367-1372, 2006.
[28] Zhang, H., et al., “Luminescence of Eu3+ and Tb3+doped Zn2SiO4 nanometer powder phosphors. “ Materials chemistry and physics, 68(1), p. 31-35, 2001.
[29] Morimo, R. and K. Matae, “Preparation of Zn2SiO4 : Mn phosphors by alkoxide method. “, Materials Research Bulletin, 24(2), p. 175-179, 1989.
[30] Que, W., et al., “Sol-gel derived hard optical coatings via organic/inorganic composites. “, Composites science and technology, 63(3), p. 347-351, 2003.
[31] Hwang, B., R. Santhanam, and S. Hu, “Synthesis and characterization of multidoped lithium manganese oxide spinel,Li1.02Co0.1Ni0.1Mn1.8O4,for rechargeable lithium batteries.“ Journal of power sources, 2002. 108(1): p. 250-255.
[32] Cho, T., et al., “Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method.“, Journal of power sources, 142(1-2), p. 306-312, 2005.
[33] Park, S.-H., W.O. Sung, and Y.-K. Sun, “Synthesis and structural characterization of layered Li[Ni1/3+ xCo1/3Mn1/3-2xMox]O2 cathode materials by ultrasonic spray pyrolysis.“, Journal of power sources, 146(1-2), p. 622-625, 2005.
[34] Xu, K., et al., “Synthesis and electrochemical properties of CaF2-coated for long-cycling Li[Mn1/3Co1/3Ni1/3]O2 cathode materials.“, Electrochimica acta, 60, p. 130-133, 2012.
[35] 周斌, 倪.姚.沈., “納米材料製備技術. “ 北京:化學工業出版社.
[36] Wu, F., et al., “A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion battery.“, Journal of Power Sources, 195(8), p. 2362-2367, 2010.
[37] Kim, H.-S., et al., “Preparation of lithium-ion polymer battery using LiNi1/3Co1/3Mn1/3O2 as a cathode material and its electrochemical properties. “, Journal of electroceramics, 17(2-4), p. 673-677, 2006.
[38] Zhi min, L., H. Guo rong, and P. Zhong dong, “Synthesis and characterization of layered Li(Ni1/3Mn1/3Co1/3)O2 cathode materials by spray-drying method.“, Trans. Nonferrous Met. Soc. China, 17(20071), p. 291-295, 2007.
[39] Lin, B., et al., “Electrochemical properties of carbon-coated Li [Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries.“, Solid State Ionics, 179(27-32), p. 1750-1753, 2008.
[40] 涂文, 王., 恭明璽, “新型鋰離子材料鋰錳鈷鎳氧的製備技術研究.“, 湖南有色金屬, 24(4), p. 37-40, 2008.
[41] Sathiya, M., et al., “Rapid synthetic routes to prepare LiNi1/3Mn1/3Co1/3O2as a high voltage, high-capacity Li-ion battery cathode material.“, Materials Research Bulletin, 44(10), p. 1990-1994, 2009.
[42] 王海燕, et al., “溶膠凝膠-軟模板法製備 LiNi1/3Co1/3Mn1/3O2 正極材料及其電化學性能研究. “, 無機化學學報, (012), p. 2090-2096, 2009
[43] Yang, Z., et al., “Core–shell Li(Ni1/3Co1/3Mn1/3)O2/Li(Ni 1/2Mn1/2)O2 fibers: Synthesis, characterization and electrochemical properties.“, Solid State Ionics, 181(15), p. 678-683, 2010.
[44] Santhanam, R. and B. Rambabu, “High rate cycling performance of Li1. 05Ni1/3Co1/3Mn1/3O2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries.“ Journal of power sources 195(13), p. 4313-4317, 2010.
[45] Xie, J., et al., “Hydrothermal synthesis of Li (Ni1/3Co 1/3 Mn 1/3)O2 for lithium rechargeable batteries.“ Ceramics International, 36(8), p. 2485-2487, 2010.
[46] Zhang, S., et al., “Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method.“, Powder Technology, 198(3), p. 373-380, 2010.
[47] Shun-yi, Y., et al., “Influence of pretreatment process on structure, morphology and electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 cathode material.“, 21(9), p.1995–2001, 2011.
[48] Du, L., H. Ren, and Z. Peng, “Synthesis and characterization of the nanosized Li[Ni1/3Co1/3Mn1/3]O2.“ Materials Chemistry and Physics, 135(2-3),p. 264–267, 2012.
[49] Mohanty, D. and H. Gabrisch, “Microstructural investigation of Li[Ni1/3Co1/3Mn1/3]O2 (x≤ 1) and its aged products via magnetic and diffraction study.“ Journal of Power Sources, 220, p. 405–412, 2012.
[50] Liu, Q., et al., “Structural and electrochemical properties of Co-Mn-Mg multi-doped nickel based cathode materials LiNi0.9Co0.1-x[Mn1/2Mg1/2]xO2 for secondary lithium ion batteries.“ Electrochimica Acta, 90, p. 350-357, 2013.
[51] Peng Yue, Z.W., Xinhai Li, Xunhui Xiong, Jiexi Wang, Xianwen Wu, Huajun Guo, “The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution.“, Electrochimica Acta, 95, p. 112– 118, 2013.
[52] 劉興鑑, 趙.謝.孫.陳., “儀器分析. “ 權威圖書有限公司.
[53] Zhang, X., et al., “Synthesis and Characterization of LiNi1/3Mn1/3Co1/3O2 by Wet-Chemical Method.“, ECS Transactions, 16(42), p. 11-19, 2009.
[54] 甚谷春, et al., “廢棄鋰电池中鎳鈷錳的回收及正極材料LiCo1/3Ni1/3Mn1/3O2的制備. “ 無機化學學報, 27(10), p. 1987-1992, 2011.
[55] Kim, M.G., et al., “XAS Investigation of Inhomogeneous Metal-Oxygen Bond Covalency in Bulk and Surface for Charge Compensation in Li-Ion Battery Cathode Li[Ni1∕3Co1∕3Mn1∕3]O2 Material.“, Journal of The Electrochemical Society, 152(7), p. A1320-A1328, 2005.
[56] Guo, J., et al., “Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by the metal acetates decomposition method.“ Electrochimica acta, 51(18), p. 3731-3735, 2006.
[57] Shin, Y.-J., et al., “Investigation on the microscopic features of layered oxide Li[Ni1/3Co1/3Mn1/3]O2 and their influences on the cathode properties.“, Solid State Ionics, 177(5), p. 515-521, 2006.
[58] Shaju, K., G. Subba Rao, and B. Chowdari, “Performance of layered Li(Ni 1/3Co1/3Mn 1/3)O2 as cathode for Li-ion batteries.“, Electrochimica Acta, 48(2), p. 145-151, 2002.
[59] Yang, Z., et al., “Core–shell Li(Ni1/3Co1/3Mn1/3)O2/Li(Ni1/2Mn1/2)O2 fibers: Synthesis, characterization and electrochemical properties.“, Solid State Ionics, 181(15), p. 678-683, 2010.
[60] Weng, Y., et al., “Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O prepared from spent lithium ion batteries.“, Journal of Hazardous Materials, 246–247, p. 163-172, 2013.
論文全文使用權限:同意授權於2018-07-11起公開