現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以溶膠凝膠法製備非冷卻型紅外光感測薄膜V1-x-yWxSiyO2及其優質係數之研究 [以論文名稱查詢館藏系統]
論文英文名稱:The Manufacturing and Characterization of Sol-Gel
V1-x-yWxSiyO2 Thin Films for Uncooled Thermal Detectors [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程所
中文姓名:洪博斌
英文姓名:Po-Pin Hung
研究生學號:93328039
學位類別:碩士
語文別:英文
口試日期:2006-06-02
論文頁數:65
指導教授中文名:楊重光
口試委員中文名:曾俊元;陳洋元
中文關鍵詞:二氧化釩非冷卻型紅外光感測器熱致變溶膠凝膠法
英文關鍵詞:vanadium dioxidethermochromicbolometersol-gel process
論文中文摘要:具熱致變特性之V1-x-yWxSiyO2複合薄膜因有較高的電阻溫度係數,所以是應用在非冷卻型輻射熱感測器元件的重要熱敏電阻材料之一。在本論文中,以溶膠凝膠法及旋轉塗佈法製備V1-x-yWxSiyO2複合薄膜,經由還原氣氛爐在500℃~600℃條件下煅燒成V1-x-yWxSiyO2 複合薄膜。除此之外,V1-x-yWxSiyO2 複合薄膜再利用黃光製程製備成非冷卻型輻射熱感測器元件。
將所製備 V1-x-yWxSiyO2複合薄膜分別藉由四點探針量測儀檢測在不同溫度條件下其電性性質的改變及原子力顯微鏡檢測其表面分佈型態與晶粒大小。除此之外,利用半導體製程將高電阻溫度係數的薄膜做成非冷卻型輻射熱感測器元件;提供其元件直流電源且並聯一個電阻,在500K的黑體模擬器輻射下利用鎖像放大器及截波器檢測在不同頻率條件下元件應答及雜訊。
研究結果顯示V1-x-yWxSiyO2複合薄膜相轉變溫度可由70℃改質到20℃,且在室溫,電阻溫度係數可達11%/K。當複合薄膜摻雜莫耳比(Wx+/V4+)0.02,可得到一對線性的遲滯迴圈;摻雜莫耳比(Siy+/V4+)0.15可得一對窄頻寬的遲滯迴圈。除此之外,在不同的摻雜量與操作條件下,都可得到高再現性的熱電性質。在非冷卻型輻射熱感測器元件優質係數檢測方面,其研究結果顯示,電壓響應在截波頻率60Hz達到最大值2600V/W;感應度最大值為9*106 cm Hz1/2 /W。
論文英文摘要:TheV1-x-yWxSiyO2 composite thin films are thermochromic materials for the uncooled microbolometer due to their high temperature coefficient of resistance (TCR) at room temperature. In this study, V1-x-yWxSiyO2 thin films were prepared by sol-gel method followed by spin coating process, and then calcined at 500℃~600℃ under a reducing gas flow in an atmospheric control furnace. The bolometers are patterned by photolithography process followed by wet etching.
The electrical properties of the thin films were measured by a 4-point probe meter. The surface morphology was obtained by AFM. In addition, the ohmic contact V1-x-yWxSiyO2 composite thin films were fabricated as bolometers by sputtering process; the bolometer is connected with a DC source and loaded a resistance equal to the resistance of bolometer, and the bolometer is exposed to a filtered radiation of a 500K black body to measure its responsivity and noise. The open circuit voltage is measured using a lock-in amplifier modulated by a chopper and the incident radiation.
The V1-x-yWxSiyO2 composite thin films characterized a switching temperature ranging from 20℃ to 70℃, accompanied with a temperature coefficient of resistance (TCR) 11%/K at room temperature. The composite films doped with tungsten at mixing ratio (Wx+/V4+) of 0.02 show a sharp hysteresis loop, whereas the composite films doped with silicon at mixing ratio (Siy+/V4+) of 0.15 has a tight bandwidth of hysteresis loop. A variety of thermal-optical characteristics can be achieved with various dopant concentrations and process conditions.
Figures of merit for composite thin films were further evaluated on the one-element bolometers without air-gap suspending structure. Results show that the detectors exhibit a responsivity over 2600 V/W and detectivity 9*106 cm Hz1/2 /W at 60Hz chopper frequency measured at room temperature.
論文目次:CONTENTS

CHINESE ABSTRACT i
ENGLISH ABSTRACT iii
ACKNOWLEDGEMENTS v
CONTENTS vi
TABLE CONTENTS ix
FIGURE CONTENTS x
Chapter 1 INTRODUCTION 1
1.1 Classification of IR detectors 1
1.1.1 Photo-detectors 3
1.1.2 Thermal-detectors 3
1.2 Figures of merit 4
1.2.1 Temperature coefficient of resistance 4
1.2.2 Responsivity 5
1.2.3 Noise Equivalent Power 5
1.2.4 Detectivity 6
1.3 Noise Source 6
1.3.1 1/f Noise 7
1.3.2 Johnson Noise 7
1.3.3 Temperature Noise 8
Chapter 2 LITERATURES REVIEW AND THEORY 10
2.1 The vanadium dioxide 10
2.1.1 The physical structure of vanadium dioxide 10
2.1.2 The electronic structure of vanadium dioxide 12
2.1.3 Metal insulator transition in vanadium oxide 14
2.1.4 Hysteresis loop in vanadium dioxide 16
2.1.5 Doped vanadium dioxide composite films with foreign cations 18
2.2 Device Physics 19
2.3 Sol-gel process 24
2.3.1 Generation mechanisms in the metal-organic route 24
2.3.2 Homogeneous nucleation in a solution 25
2.3.3 Advantages and limitations of sol-gel method 27
2.4 Spin coating process theory 28
Chapter 3 PATENTS 33
Chapter 4 EXPERIMENTS 38
4.1 Materials 38
4.1.1 Materials used in Sol-gel process 38
4.1.2 Materials used in lithography process 38
4.1.3 Materials used in etching process 38
4.2 Equipments 39
4.2.1 Equipments for manufacturing thin films 39
4.2.2 Equipments for characterizing thin films 39
4.3 The Experimental phases 42
4.3.1 Non-alkali glass cleaning 42
4.3.2 Thin film deposition 43
4.3.3 Characterization of TCR and grain size 44
4.3.4 Fabrication of bolometer of V1-x-yWxSiyO2 45
4.3.5 Characterization of figures of merit 46
Chapter 5 RESULTS AND DISCUSSION 47
5.1 The vanadium dioxide composite thin films preparation 47
5.2 The morphology of VO2 composite films 47
5.3 Temperature-dependent electrical properties of VO2 composite films 50
5.4 Figures of merit of VO2 composite films 55
Chapter 6 CONCLUSION 59
REFERENCE 60
















TABLE CONTENTS

Table 1 Comparison of IR detectors 2
Table 2 Basic properties of vanadium oxides 11
Table 3 Some literatures of bolometer and their figures of merit. 23
Table 4 U.S. Patent of Vanadium dioxide 37
Table 5 The recipe of sol-gel processing. 44
Table 6 Surface morphology of V1-x-yWxSiyO2 films 48
Table 7 Temperature dependent hysteresis loop of V1-x-yWxSiyO2 films 54
















FIGURE CONTENTS

Figure 1 Classification of IR detectors 2
Figure 2 Comparison of the MIT temperatures and the magnetic ordering temperature of the vanadium oxides. 12
Figure 3 The structural of vanadium dioxide. (a). Monoclinic structure of vanadium dioxide. (b). Tetragonal (Rutile) structure of vanadium dioxide. 12
Figure 4 One-electron band structure for tetragonal vanadium dioxide. 13
Figure 5 Schematic modification of d-band structure of vanadium dioxide on passing from metallic to semiconductor phase 14
Figure 6 Experimentally determined hysteresis characteristics for the volume fraction evolution (solid circles) compared with those calculated from the model F(T) (solid line). 17
Figure 7 Schematic representation of hysteresis in volume-fraction evolution with temperature illustrating limiting curve FL(T,δ=+1) and FL(T,δ=-1). 17
Figure 8 Summary of Sol-Gel process, techniques and products. 25
Figure 9 Variation of the nucleation and growth rates with the solute concentration. 26
Figure 10 Nucleation and growth sequence of a bimodal distribution of particles. 27
Figure 11 Four stages of Spin coating process 29
Figure 12 Folw visualization pictures for the case of Q=1.2 ml/1.0 sec and =3000 rpm 31
Figure 13 Map of injection volume and injection rate for wafer coating condition. 32
Figure 14 Flow diagram of preparation of thin films of VO2. 33
Figure 15 The four-point probe meter. 40
Figure 16 Schematic representation of the four-point probe meter. 40
Figure 17 Schematic representation of an AFM. 41
Figure 18 The schematic diagram of figures of merit characterization system. 42
Figure 19 The flow diagram of thin film deposition. 43
Figure 20 The flow diagram of the photolithography process. 45
Figure 21 Structure diagram of the V1-x-yWxSiyO2 uncooled bolometer.(a) Top view, (b) Front view. 46
Figure 22 The schematic diagram of the bolometer 46
Figure 23 AFM images of 500*500 nm2 scanning window of the V1-x-yWxSiyO2 thin films. 49
Figure 24 Comparative results of R-T hysteresis loop for case of (A), (D), (G). 51
Figure 25 Comparative results of R-T hysteresis loop for (A), (B), (C). 52
Figure 26 The dependence of responsivity on chopper frequency at 10 μA bias current for (I), (G), (H) group. 56
Figure 27 The dependence of NEP on chopper frequency at 10 μA bias current for (I), (G), (H) group. 57
Figure 28 The dependence of detectivity on chopper frequency at 10 μA bias current for (I), (G), (H) group. 58
論文參考文獻:REFERENCE

[1]. R. J. Keyes, Optical and Infrared Detectors, New York, Springer-Verlag berlin Heidelberg, 1980.
[2]. Eustace L. Dereniak, Devon G. Crowe, Optical Radiation Detectors, New York, John Wiley & Sons, 1984.
[3]. E. L. Dereniak, G. D. Boreman, Infrared Detectors and Systems, New York, John Wiley & Sons, 1996.
[4]. C. B. Greenberg, Thin Solid Films, 110, 1983, pp.73~82.
[5]. Tory D. Manning, Ivan P. Parkin, J. Mater. Chem., 14, 2004, pp.2554~2559.
[6]. R. T. Rajendra, et. al., Smart Mater. Struct., 12, 2003, pp.188~192.
[7]. V. Yu. Zerov, Yu. V. Kulikov, V. G. Malyarov, I. A. Khrebtov, I. I. Shaganov, E. B. shadrin, Tech. Phys. Lett., 27, 5, 2001, pp. 378~380.
[8]. Ikuya Takahashi, Mitsuhiro Hibino, Tetsuichi Kudo, Jpn. J. appl. Phys., 35, 1996, pp.438~440.
[9]. A. S. Barker, Jr., H.W. Verleur, H. J. Guggenheim, Phys. Rev. Lett.,17, 1966, pp.1286~1289.
[10]. Hans W. verleur, A. S. Barker, Jr., C. N. berglung, Phys. Rev., 172, 1968, pp.788~798.
[11]. F. Gervais, Winfried Kress, Phys. Rev. B, 31, 1985, pp.4809~4814.
[12]. D. B. McWhan, M. Marezio, J. P. remeika, P. D. Dernier, Phys. Rev. B, 10, 1974, pp.490~495.
[13]. M Abbate, F. M. F. de Groot, J. C. Fuggle, Y. J. Ma, C. T. chen, F. Sette, A. Fujimori, Y. Ueda, K. Kosuge, Phys. Rev. B, 43, 1991, pp.7263~7266.
[14]. C. N. Berglund, H. J. Guggenheim, Phys. Rev., 185, 1969, pp.1022~1033
[15]. David Adler, Harvey Brooks, Phys. Rev., 155, 1967, pp.826~840.
[16]. U. Schwingenschlogl, Volker Eyert, Ann. Phys. (Leipzig), 13, 9, 2004, pp.475~510.
[17]. John B. Goodenough, J. Solid State Chem., 3, 1971, pp.490~500.
[18]. Volker Eyert, Ann. Phys. (Leipzig), 11, 9, 2002, pp.650~702.
[19]. John B. Goodenough, Phy. Rev., 117, 6, 1960, pp.1442~1451.
[20]. A. Zylbersztejn, N. F. Mott, Phys. Rev. B, 11, 1975, pp.4383~4395.
[21]. D. Paquet, P. Leroux-Hugon, Phy. Rev. B, 22, 1980, pp.5284~5301.
[22]. S. Shin, S. Suga, M. Taniguchi, M. Fujisawa, H. Kanzaki, A. fujimori, H. Daimon, Y. Ueda, K. Kosuge, s. Kachi, Phy. Rev. B, 41, 8, 1990, pp.4993~5009.
[23]. L. A. L. de Almeide, G. S. Deep, A. M. N. Lima, R. C. S. Freire, IEEE Trans. Ins. Mea., 50, 4, 2001, pp.1030~1035.
[24]. L. A. L. de Almeide, G. S. Deep, A. M. N. Lima, IEEE Trans. Ins. Mea. Tech. Conf., 2003, pp.1285~1287.
[25]. L. A. L. de Almeide, Gurdip Singh Deep, Antonio Marcus Nogueira Lima, helmut Neff, Opt. Eng., 41, 10, 2002, pp.2582~2588.
[26]. V. A. Klimov, I. O. Timofeeva, S.D. Khanin, E. B. Shadrin, A. V. Ilinskii, F. Silva-Andrade, Tech. Phy., 47, 9, 2002, pp.1134~1139.
[27]. F. Beteille, J. Livage, J. sol-gel Sci. Tech., 13, 915, 1998, pp.915~921.
[28]. W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, A. Scharmann, Thin Solid Films, 402, 2002, pp.226~231.
[29]. C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, Phys. Rev. B, 31, 1985, pp.1000~1011.
[30]. P. Jin, S. Tanemura, Thin Solid Films, 239, 1996, pp.239~242.
[31]. P. Jin, S. Nakao, S. Tanemura, Thin Solid Films, 324, 1998, pp.151~158.
[32]. Agha Jahanzeb, Christine M. Travers, Zeynep Celik-Butler, Donald P. Butler Stephen G. Tan, IEEE Trans. on electron devices, 44, 1997, pp.1795~1997.
[33]. R. T. Rajendra Kumar, B. Karunagaran, D. Mangalaraj, Sa. K. Narayandass, P. Manoravi, M. Joseph, Vishnu Gopal, R. K. Madaria, J. P. Singh, International Journal of Infrared and millimeter waves, 24, 2003, pp.327~334.
[34]. Changhong Chen, Xinjian Yi, Xingrong Zhao, Bifeng Xiong, Sens. Actuators A , 90, 2001, pp. 212~214.
[35]. Changhong Chen, Xinjian Yi, Jing Zhang, Bifeng Xiong, International Journal of Infrared and Millimeter Waves, 22, 2001, pp.53~58
[36]. Xinjian Yi, Sihai Chen, Yingrui Wang, Bifeng Xiong, Hongchen Wang, International Journal of Infrared and Millimeter Waves, 23, 2002, pp.1699~1704.
[37]. Xinjian Yi, Changhong Chen, Luqin Lin, Yingrui Wang, Bifeng Xiong, Hongchen Wang, Sihai Chen, Infrared Phys. Technol., 44, 2003, pp.137~141,.
[38]. S. B. Wang, S. B. Zhou, G. Huang, X. J. Yi, Surface & Coatings Technology, 191, 2005, pp.330~334,.
[39]. S. B. Wang, B. F. Xiong, S. B. Zhou, G. Huang, S. H. Chen, X. J. Yi., Sens. Actuators A, 117, 2005, pp.110~114.
[40]. S. B. Wang, S. B. Zhou, G. Huang, B. F. Xiong, S. H. Chen, X. J. Yi., Microelectronics Journal, 36, 2005, pp.91~95,.
[41]. Sherif Sedky, Paolo Fiorini, Matty Caymax, Agnes Verbist, Chris Baert, Sens. Actuators A, 66, 1988, pp.193~199.
[42]. P. C. Shan, Z. Celik-Butler, D. P. Butler, A. Jahanzeb, J. Appl. Phys., 78, 12, 1995, pp.7334~7339.
[43]. P. C. Shan, Z. Celik-Butler, D. P. Butler, A. Jahanzeb, C. M. Travers, W. Kula, Roman Sobolewski, J. Appl. Phys., 80, 12, 1996, pp. 7118~7122.
[44]. Hideo Wada, Takanori Sone, Hisatoshi hata, Yoshiyuki Nakaki, KYohta, Masashi Ueno, Masafumi Kimata, Proc. SPIE, 4369, 2001, pp.297~304.
[45]. Hubert Jerominek, Francis Picard, Nicholas R. Swart, Martin Renaud, Marc Levesque, Mario Lehoux, jean-Sebastien Castonguay, Martin Pelletier, Ghislain Bilodeau, Danick Audet, Timothy D. Pope, Philippe Lambert, Proc. SPIE, 2746, 1996, pp.60~71.
[46]. Hideo Wada, Mitsuhiro Nagashima, Naoki Oda, Tokuhito Sasaki, Akihiron Kawahara, Masayuki kanzaki, Yoshio Tsuruta, Yohru Mori, Shouhei Matsumoto, Takeshi Shima, Minoru Hijikawa, Nanao Tsukamoto, Hideki Gotoh, Proc. of SPIE, 3379, 1997, pp.90~100.
[47]. B.E. Cole, R. E. Higashi, R. A. Wood, Proc. IEEE, 86, 8, 1998, pp.1679~1686.
[48]. Chen Changhong, Xinjian Yi, Xingrong Zhao, Bifeng Xiong, Sens. Actuators A, 90, 2001, pp.212~214.
[49]. R. T. Rajendra Kumar, B. karunagaran, D. Mangalaraj, Sa. K. Narayandass, P. Manoravi, M. Joseph, Vishnu Gopal, Smart Mater. Strut., 12, 2003, pp.188~192.
[50] R. T. Rajendra Kumar, B. karunagaran, D Mangalaraj, Sa. K. Narayandass, P. Manoravi, M. Joseph, Vishnu Gopal, R. K. Madaria, J. P. Singh, International Journal of Infrared and Millimeter Waves, 24, 2003, pp.327~333.
[51]. Dinguo Chen, solar energy materials and solar cells, 68, 2001, pp.313~336.
[52]. C. Jeffrey Brinker, George W. Scherer, Sol-Gel Science, London, Academic Press, 1990.
[53]. Alain C. Pierre, Introduction to Sol-Gel Processing, Boston, Kluwer Academic Publishers, 1998.
[54]. http://www.mse.arizona.edu/faculty/birnie/Coatings/
[55]. Dietrich Meyerhofer, J. Appl. Phys., 49, 7, 1978, pp.3993~3997.
[56]. Fu-Chu Chou, min-Wen Wang, Shih-Ching Gong, Zen-Gi Yang, J. Electronic Mater., 30, 4, 2001, pp.432~438.
[57]. G. A. Rozgonyi, Preparation of thin films of vanadium oxide, U.S. Patent 3483110, 1969.
[58]. H. Keith Eastwood, barry A. Noval, Method of producing thin film devices of doped vanadium oxide material, U.S. Patent 3899407, 1975.
[59]. J. Kevin Scanlon, Charles B Greenberg, Thermochromic vanadium oxide coated glass, U.S. Patent 4400412, 1983.
[60]. Charles B. Greenberg, Chemical vapor deposition of vanadium oxide coating, U.S. Patent 4393095, 1983.
[61]. Charles B. Greenberg, Thermochromic vanadium oxide with depressed switching temperature, U.S. Patent 4401690, 1983.
[62]. Richard S. Potember, Kenneth R. Speck, Henry S. Hu, Vanadium dioxide formed by the sol-gel process, U.S. Patent 4957725, 1990.
[63]. Stanley A. Lawton, Edward A. Theby, Method for making vanadium dioxide powers, U.S. Patent 5427763, 1995.
[64]. Hideo Wada, Mitsuhiro nagashima, Naoki Oda, Tokuhito Sasaki, Toru Mori, VOx film, where x is greater than 1.875 and less than 2.0, and a bolometer-type infrared sensor comprising the VOx film, U.S. Patent 5801383, 1998.
[65]. Laurence A. Gea, Lynn A. Boatner, VO2 precipitates for self-protected optical surfaces, U.S. Patent 5885665,1999.
[66]. Barrett E. Cole, Christopher J. Zins, Flexible high performance microbolometer detector material fabricated via controlled ion beam sputter deposition process, U.S. Patent 6313463, 2001.
[67]. Pierre Legrand, Jean-Raymond Gavarri, Jean-Christoph Valmalette, Gilbert Vacquier, Daniel Lefever, Vanadium dioxide microparticals, method for preparing same, and use thereof, in particular for surface coating, U.S. Patent 6358307, 2002.
[68]. Bruno K. Meyer, Dirk Schalch, Thomas Christmann, Thermochromic coating, U.S. Patent 6440592, 2002.
[69]. Alain Arnaud, Fabien Beteille, Jean-Christophe Giron, Francois Lerbet, Glazing coated with at least one layer having thermochromic properties, U.S. Patent 6872453, 2005.
[70]. John C. Vickerman, Surface Analysis, New York, John Wiley & Sons, 2004.
論文全文使用權限:同意授權於2006-06-16起公開