You are here:Home > Theses > Detail
  • Authorization
Title:部分體重負荷中採用壓力中心點之步態樣示辨識 [以論文名稱查詢館藏系統]
Translated Title:Gait-patterns Recognition using the Center of Pressure in Partial Weight Bearing [以論文名稱查詢館藏系統]
School:臺北科技大學
College:電資學院
Department:電腦與通訊研究所
Year:101
Publish Year:102
Creator:林聖文
Translated Creator:Sheng-Wen Lin
Student ID:100418019
Degree:碩士
Language:中文
Defense Date:2013-07-29
Pages:89
Advisor:段裘慶
Translated Advisor:Chiu-Ching Tuan
Committee:李財福;駱榮欽
Translated Committee:Tsair-Fwu Lee;Rong-Chin Lo
Keyword:部分體重負荷足底壓力中心點下肢復健足底壓力
Trandlated Keyword:Partial weight bearingCenter of pressureLower limb rehabilitationPlantar Pressure
Abstract:  行走對人體日常生活之影響甚鉅,且下肢骨折佔全身骨折發生比例最高約60%,醫護人員於病患下肢骨折術後通常會透過部分體重負荷處方(Partial Weight Bearing, PWB)增加復原效果,但僅以視覺觀察卻無法瞭解行走之足底壓力分布。為改善此缺失,本論文提出採用足底壓力中心點之步態辨識系統(GRCOP),並參考臨床醫學文獻對於足部病癥之探討紀錄,幫助受測者以足底壓力中心點分析人體步態相位,找出快速變化之行走姿勢與施力關係,並透過藍牙無線傳輸技術,以及自行研製之電路進行開發輔助PWB復健系統,並將過程中之足底壓力資訊顯示於圖形化介面。
  辨識效能分析中針對步態辨識之取樣頻率、相異受測者及不同步態相位進行探討,於不同行走處方(正常行走、20%體重負荷及全身體重負荷)進行辨識效能評估,並透過統計學上常使用之精確度、敏感度與F1評分(對精確度與敏感度之綜合評估因子)作為效能分析之評估因子。量測實驗結果顯示,當GRCOP辨識機制之取樣頻率超過30 Hz時,各行走處方下F1評分均高於80%;針對10位受測者(其中1位膝韌帶受損)進行量測時,93%以上之步態相位均能被正確辨識。儘管GRCOP於20%體重負荷中鄰近擺盪期之步態相位F1評分最低僅44%辨識能力較差,但步態相位之F1評分80%以上者,佔步態週期之站立期間93%。由本研究實驗初步證實本研究在量測實驗中,於10位正常受測者進行PWB復健之行走處方時具備良好辨識能力。
Translated Abstract:Lower limb activity has huge impact on daily life. The percentage of lower extremity fractures is about 60% of body fractures. After the surgery of lower limbs, therapists often prescribe with Partial Weight Bearing (PWB) for shortening the recovery time of rehabilitation. However, therapists can’t directly realize the actual pressure, under the patient’s plantar, by visual-observation. For solving the problem of PWB, this paper proposed Gait-patterns Recognition using the Center of Pressure (GRCOP), integrating the data of medical researches, electronic technology, and self-made hardware devices. To find the gait-phases-changes, this study uses the center of pressure of feet, for displaying rehabilitation information by graphical user interface.
To evaluate the recognition performance, this paper had compared the difference of sampling rates, subjects and gait phases, with different walking-prescriptions, such as normal-walking, 20%-weight-bearing and full-weight bearing. The experiments will evaluate three factors: sensitivity, precision and F1-score. 10 subjects were involved by these experiments, one subject had ligament injury on right extremity. When sampling rate is more than 30 Hz, the results suggested that the proposed GRCOP recognition mechanism has F1-score higher than 80% in different walking postures. Despite of the least value of F1-scores, by 20%-weight-bearing, just 44%, the GRCOP has F1-score higher than 80% in 93% of stance-state period. In this study, the GRCOP showed good recognition performance when 10 subjects were walking by the PWB prescriptions.
Table of Content:中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究動機 2
1.2 研究目的 3
1.3 論文架構 4
第二章 文獻探討 5
2.1 步態週期 5
2.2 人體足底壓力 6
2.2.1 腳掌解剖 7
2.2.2 足型異常之壓力分布 9
2.3 部分體重負荷 11
2.3.1 復健目的 11
2.3.2 處方方式 11
2.3.3 潛在問題 13
2.4 步態辨識系統 14
2.4.1 臨床中步態辨識技術 14
2.4.2 相關研究之步態辨識技術 15
2.5 鞋墊式足底壓力感測系統 16
2.5.1 足底壓力中心點 17
2.5.2 模糊足底壓力步態辨識 18
2.5.2.1 人工智慧之步態相位偵測系統 18
2.5.2.2 氣墊式感測器之步態監測 19
2.5.3 狀態圖基礎之步態辨識 21
2.5.3.1 慣性步態相位偵測 22
2.5.3.2 隱藏式馬可夫模型之步態辨識 23
2.6 力量感測電阻 24
第三章 足底壓力中心點之步態辨識 27
3.1 足底壓力感測模組 28
3.1.1 足底壓力感測位置佈局 29
3.1.2 以足部比例正規化之卡氏平面圖 30
3.1.3 足底壓力感測傳輸控制 31
3.2 步態樣式辨識模組 34
3.2.1 足底壓力與步態辨識 34
3.2.2 壓力中心點位置與數值計算 36
3.2.3 步態相位相似度模型 37
3.2.4 步態樣示辨識演算法 42
3.3 復健資訊回饋模組 44
3.4 壓力中心點之步態分析演算法 47
第四章 效能量測與分析 48
4.1 量測實驗設計 48
4.1.1 量測對象資料 48
4.1.2 量測系統架設 49
4.2 步態波形與評估項目 52
4.2.1 不同取樣頻率波形之步態波形 53
4.2.2 相異受測者之步態波形 55
4.2.3 各行走姿勢之步態波形 57
4.3 步態相位辨識之評估因子 60
4.3.1 辨識敏感度與精確度 60
4.3.2 辨識F1評分 62
4.4 量測結果分析與比較 63
4.4.1 取樣頻率量測分析 63
4.4.2 相異受測者分析 67
4.4.3 步態相位分析 70
第五章 結論與未來研究方向 75
5.1 結論 75
5.2 未來研究方向 76
參考文獻 77
附錄 82
A 中英文專有名詞對照與編號表 82
B 操作介面簡介 87
C 作者簡歷 89
Reference:[1] L. Ren, D. Li, C. Liu, Y. Yang, Y. Qian, S. Yang, F. Pu, and H. Niu, "Design of in-shoe plantar pressure monitoring system for daily activity exercise stress assessment," in Proc. of the 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, China, pp. 1367-1370, 2011.
[2] K. North, S. D. Maass, and R. W. Hitchcock, "An insole sensor for recording weight bearing behavior during tibial fracture rehabilitation," in Proc. of the IEEE International Conference on Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina, pp. 1856-1859, 2010.
[3] 行政院衛生署國民健康局。全民健康保險醫療統計年報。臺北市:行政院衛生署,2012。
[4] L. A. Zaky and W. F. Hassan, "Effect of partial weight bearing program on functional ability and quadriceps muscle performance in hemophilic knee arthritis," Egyptian Journal of Medical Human Genetics, 2013.
[5] A. Vasarhelyi, T. Baumert, C. Fritsch, W. Hopfenmuller, G. Gradl, and T. Mittlmeier, "Partial weight bearing after surgery for fractures of the lower extremity – is it achievable," Gait & Posture, vol. 23, pp. 99-105, 2006.
[6] A. Malviya, J. Richards, R. K. Jones, A. Udwadia, and J. Doyle, "Reproducibilty of partial weight bearing," Injury, vol. 36, pp. 556-559, 2005.
[7] M. L. Zequera and S. Solomonidis, "Performance of insole in reducing plantar pressure on diabetic patients in the early stages of the disease," in Proc. of the IEEE International Conference on Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina, pp. 2982-2985, 2010.
[8] H. Limei, X. Zhongyu, and H. Fen, "A novel gait contours segmentation algorithm," in Proc. of the International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE), Chungchun, China, pp. 410-413, 2010.
[9] L. Haitao, C. Yang, and W. Zengfu, "Automatic gait recognition from a distance," in Control and Decision Conference (CCDC), Xuzhou, China, pp. 2777-2782, 2010.
[10] C. Hsuan-Wei, C. Shun-Chuan, S. Li-Yuann, and S. Hsin-Nung, "Volume computation for tomographic images in assessing polyethylene wear and pelvic osteolysis after total hip arthroplasty using a 3-D image reconstruction-related method," in Nuclear Science Symposium Conference Record, Portland, OR, USA, pp. 2968-2969, 2003.
[11] Z. Pataky, D. De Leon Rodriguez, A. Golay, M. Assal, J.-P. Assal, and C.-A. Hauert, "Biofeedback training for partial weight bearing in patients after total hip arthroplasty," Archives of Physical Medicine and Rehabilitation, vol. 90, pp. 1435-1438, 2009.
[12] J. R. Ebert, D. G. Lloyd, A. Smith, T. Ackland, and D. J. Wood, "The association between external-ground-reaction force and knee-joint kinetics during partial- and full-weight-bearing gait," Clinical Biomechanics, vol. 25, pp. 359-364, 2010.
[13] J. Merle, P. Rougier, D. Belaid, S. Cantalloube, and D. Lamotte, "Is early weight bearing resumption beneficial after total hip replacement," Orthopaedics & Traumatology: Surgery & Research, vol. 95, pp. 127-133, 2009.
[14] P. Wang, K. H. Low, and A. H. McGregor, "A subject-based motion generation model with adjustable walking pattern for a gait robotic trainer: NaTUre-gaits," in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, California, pp. 1743-1748, 2011.
[15] W. Ping and K. H. Low, "Modeling and tuning of a subject-loaded mobile gait rehabilitation system," in Proc. of the 8th Asian Control Conference (ASCC '11), Kaosiung, Taiwan, pp. 1199-1204, 2011.
[16] H. B. Lim, L. Trieu Phat, K. H. Hoon, and K. H. Low, "Natural gait parameters prediction for gait rehabilitation via artificial neural network," in Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '10), Taipei, Taiwan, pp. 5398-5403, 2010.
[17] C. Meng, H. Bufu, L. Ka Keung, and X. Yangsheng, "An intelligent shoe-integrated system for plantar pressure measurement," in Proc of the IEEE International Conference on Robotics and Biomimetics (ROBIO '06), Kunming, China, pp. 416-421, 2006.
[18] R. E. Morley, Jr., E. J. Richter, J. W. Klaesner, K. S. Maluf, and M. J. Mueller, "In-shoe multisensory data acquisition system," IEEE Transactions on Biomedical Engineering, vol. 48, pp. 815-820, 2001.
[19] F. Wei-Jie, L. Yu, and Z. Guo-Yun, "Surface effects on plantar pressure characteristics in jogging," in Proc of the 2011 International Conference on Future Computer Science and Education (ICFCSE), Xi'an, China, pp. 93-96, 2011.
[20] M. Kothari, J. G. Webster, W. J. Tompkins, J. J. Wertsch, and P. Bach-y-Rita, "Capacitive sensors for measuring the pressure between the foot and shoe," in Engineering in Medicine and Biology Society, 1988. Proceedings of the Annual International Conference of the IEEE, pp. 805-806 vol.2, 1988.
[21] E. S. Sazonov, G. Fulk, J. Hill, Y. Schutz, and R. Browning, "Monitoring of posture allocations and activities by a shoe-based wearable sensor," IEEE Transactions on Biomedical Engineering vol. 58, pp. 983-990, 2011.
[22] S. Bamberg, A. Y. Benbasat, D. M. Scarborough, D. E. Krebs, and J. A. Paradiso, "Gait analysis using a shoe-integrated wireless sensor system," IEEE Transactions on Information Technology in Biomedicine, vol. 12, pp. 413-423, 2008.
[23] E. S. Sazonov, T. Bumpus, S. Zeigler, and S. Marocco, "Classification of plantar pressure and heel acceleration patterns using neural networks," in Proc. of the IEEE International Joint Conference on Neural Networks (IJCNN '05), Montreal, California, pp. 3007-3010, 2005.
[24] S. Lin, H. Tao, W. Yangyong, L. Qiao, D. D. Feng, and T. Xiaoming, "In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array," IEEE Transactions on Information Technology in Biomedicine, vol. 14, pp. 767-775, 2010.
[25] S. M. M. De Rossi, T. Lenzi, N. Vitiello, M. Donati, A. Persichetti, F. Giovacchini, F. Vecchi, and M. C. Carrozza, "Development of an in-shoe pressure-sensitive device for gait analysis," in Proc. of the IEEE International Conference on Engineering in Medicine and Biology Society (EMBC '11), Boston, USA, pp. 5637-5640, 2011.
[26] J. Bae and M. Tomizuka, "Gait phase analysis based on a hidden markov model," Mechatronics, vol. 21, pp. 961-970, 2011.
[27] D. Kotiadis, H. J. Hermens, and P. H. Veltink, "Inertial gait phase detection for control of a drop foot stimulator: Inertial sensing for gait phase detection," Medical Engineering & Physics, vol. 32, pp. 287-297, 2010.
[28] K. Kyoungchul and M. Tomizuka, "A gait monitoring system based on air pressure sensors embedded in a shoe," IEEE/ASME Transactions on Mechatronics, vol. 14, pp. 358-370, 2009.
[29] S. Young-Soo and P. Sangkyung, "Pedestrian inertial navigation with gait phase detection assisted zero velocity updating," in Proc. of the 4th International Conference on Autonomous Robots and Agents (ICARA '09), Wellington, Newzealand, pp. 336-341, 2009.
[30] G. Dardenne, C. Hamitouche, E. Stindel, and C. Roux, "Ultrasound imaging-based procedure to integrate the dynamic behavior of the pelvis in total hip arthroplasty planning," in Proc. of the 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI '08) pp. 1187-1190, 2008.
[31] M. Benocci, Ba, x, M. chlin, E. Farella, D. Roggen, L. Benini, Tro, and G. ster, "Wearable assistant for load monitoring: recognition of on body load placement from gait alterations," in Proc. of the 4th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 1-8, 2010.
[32] H. L. Hurkmans, J. B. Bussmann, and E. Benda, "Validity and interobserver reliability of visual observation to assess partial weight-bearing," Archives of Physical Medicine and Rehabilitation, vol. 90, pp. 309-313, 2009.
[33] J. Perry and J. M. Burnfield, Gait Analysis: Normal and Pathological Function: Slack Incorporated, 2010.
[34] C. M. Senanayake and S. M. N. A. Senanayake, "Computational intelligent gait-phase detection system to identify pathological gait," IEEE Transactions on Information Technology in Biomedicine, vol. 14, pp. 1173-1179, 2010.
[35] K. North, M. Q. Potter, E. N. Kubiak, S. J. M. Bamberg, and R. W. Hitchcock, "The effect of partial weight bearing in a walking boot on plantar pressure distribution and center of pressure," Gait & Posture, vol. 36, pp. 646-649, 2012.
[36] R. L. Drake, A. W. Vogl, A. W. M. Mitchell, and H. Gray, Gray's Anatomy for Students: Churchill Livingstone/Elsevier, 2010.
[37] H. Ozden, Y. Balci, C. Demirustu, A. Turgut, and M. Ertugrul, "Stature and sex estimate using foot and shoe dimensions," Forensic Science International, vol. 147, pp. 181-184, 2005.
[38] W. R. Ledoux and H. J. Hillstrom, "The distributed plantar vertical force of neutrally aligned and pes planus feet," Gait & Posture, vol. 15, pp. 1-9, 2002.
[39] Y. Tanaka, Takakura,Y.,Fujii,T.,Kumai,T.,Sugimoto,K.,, "Hind foot alignment of hallux valgus evaluated by a weight bearing subtalar X-ray view.," in Proc. of the Foot and Ankle International, 1999.
[40] J. Crosbie, J. Burns, and R. A. Ouvrier, "Pressure characteristics in painful pes cavus feet resulting from Charcot-Marie-Tooth disease," Gait & Posture, vol. 28, pp. 545-551, 2008.
[41] M. Birtane and H. Tuna, "The evaluation of plantar pressure distribution in obese and non-obese adults," Clinical Biomechanics, vol. 19, pp. 1055-1059, 2004.
[42] S. Stucke, D. McFarland, L. Goss, S. Fonov, G. R. McMillan, A. Tucker, N. Berme, H. Cenk Guler, C. Bigelow, and B. L. Davis, "Spatial relationships between shearing stresses and pressure on the plantar skin surface during gait," Journal of Biomechanics, vol. 45, pp. 619-622, 2012.
[43] R. G. Checketts, C. G. Moran, and A. G. Jennings, "134 tibial shaft fractures managed with the dynamic axial fixator," Acta Orthopaedica, vol. 66, pp. 271-274, 1995.
[44] F. M. Pierson and S. L. Fairchild, Principles and Techniques of Patient Care: W. B. Saunders, 2002.
[45] H. B. Lim, T. P. Luu, K. H. Hoon, X. Qu, A. Tow, and K. H. Low, "Study of body weight shifting on robotic assisted gait rehabilitation with NaTUre-gaits," in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '11 ), San Francisco, California, pp. 4923-4928, 2011.
[46] P. K. Artemiadis and H. I. Krebs, "Interlimb coordination evoked by unilateral mechanical perturbation during body-weight supported gait," in Proc. of the IEEE International Conference on Rehabilitation Robotics (ICORR '11), pp. 1-5, 2011.
[47] T. Watanabe, Y. Kobayashi, and M. G. Fujie, "Pelvic motion analysis for gait phase estimation during gait training with body weight support," in Proc. of the IEEE International Conference on Systems, Man and Cybernetics (SMC), Anchorage, USA, pp. 3219-3223, 2011.
[48] E. Jonsson, A. Seiger, and H. Hirschfeld, "Postural steadiness and weight distribution during tandem stance in healthy young and elderly adults," Clinical Biomechanics, vol. 20, pp. 202-208, 2005.
[49] Y. Shibata, S. Imai, T. Nobutomo, T. Miyoshi, and S. Yamamoto, "Development of body weight support gait training system using antagonistic bi-articular muscle model," in Proc. of the IEEE International Conference on Engineering in Medicine and Biology Society (EMBC '10), pp. 4468-4471, 2010.
[50] I. A. Kramers De Quervain, S. R. Simon, S. U. E. Leurgans, W. S. Pease, and D. McAllister, "Gait pattern in the early recovery period after stroke," The Journal of Bone & Joint Surgery, vol. 78, pp. 1506-14, 1996.
[51] S. Tamefusa, H. Yano, N. Tanaka, H. Saitou, and H. Iwata, "Motion improvement for stairs climbing and descending with gait rehabilitation system," in Proc. of the 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob '10), pp. 7-14, 2010.
[52] D. Lafond, M. Duarte, and F. Prince, "Comparison of three methods to estimate the center of mass during balance assessment," Journal of Biomechanics, vol. 37, pp. 1421-1426, 2004.
[53] W. M. Hollinger A, " Evaluation of commercial force sensing resistors," in Proc. of the International Conference on New Interfaces for Musical Expression (NIME '06), Paris, France, pp., 2006.
[54] H. Hsiao, J. Guan, and M. Weatherly, "Accuracy and precision of two in-shoe pressure measurement systems," Ergonomics, vol. 45, pp. 537-555, 2002.
[55] M. J. Mueller, "Application of plantar pressure assessment in footwear and insert design," Journal of Orthopaedic & Sports Physical Therapy, vol. 29, pp. 747-55, 1999.
[56] R. Rupp, H. Plewa, E. P. Hofer, and M. Knestel, "MotionTherapy@Home - A robotic device for automated locomotion therapy at home," in Proc. of the IEEE International Conference on Rehabilitation Robotics (ICORR '09), pp. 395-400, 2009.
[57] A. C. Schouten, T. A. Boonstra, F. Nieuwenhuis, S. F. Campfens, and H. van der Kooij, "A bilateral ankle manipulator to investigate human balance control," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, pp. 660-669, 2011.
[58] S. Matsuda, S. Demura, K. Kasuga, and H. Sugiura, "Reliability and sex differences in the foot pressure load balance test and its relationship to physical characteristics in preschool children," Advances in Physical Education, vol. 2, pp. 44-48, 2012.
[59] N. Jardine and C. J. van Rijsbergen, "The use of hierarchic clustering in information retrieval," Information Storage and Retrieval, vol. 7, pp. 217-240, 1971.
[60] M. Aung, S. Thies, L. Kenney, D. Howard, R. Selles, A. Findlow, and J. Goulermas, "Automated detection of instantaneous gait events using time frequency analysis and manifold embedding," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. PP, pp. 1-8, 2013.
[61] W. Jeen-Shing, L. Che-Wei, Y. T. C. Yang, and H. Yu-Jen, "Walking pattern classification and walking distance estimation algorithms using gait phase information," IEEE Transactions on Biomedical Engineering, vol. 59, pp. 2884-2892, 2012.
Paper Authorization:ApprovelAt2014-08-26Open