現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:水庫集水區水質與魚類生態系統模擬之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Modeling Water Quality and Fish Ecosystem in a Reservoir Watershed [以論文名稱查詢館藏系統]
英文姓名:Jin-Wei Chen
英文關鍵詞:AQUATOX ModelNutrientSWAT ModelAquatic ecosystemFish biomass
本研究旨為應用AQUATOX模式模擬集水區上游溪流水質與魚類生態並評估模式之適用性。AQUATOX為一個水生生態系統模式,可模擬多種水域汙染物的變化以及汙染物對魚類、無脊椎動物和水生植物的影響。研究首先收集翡翠水庫集水區1995至2014年氣象、地文、水文及水質資料,應用SWAT(Soil and Water Assessment Tool)模式評估集水區上游陸域之逕流與營養鹽負荷量,再輸入至AQUATOX進行河溪水質與魚類生物量模擬,並探討水生生態模式於台灣集水區的適用性。
研究結果顯示,AQUATOX於營養鹽之月模擬表現均十分合理,特別是總氮,其效率係數可達0.6以上。魚類生物量模擬以香魚及明潭吻鰕虎最好,根據統計檢定結果顯示,其實測與模擬之資料分布平均值與變異數均無顯著差異。而脂鮠、台灣石𩼧、圓吻鯝、平頷鱲及台灣纓口鰍之變異數結果稍差,但若進一步檢視F statistics vs. Relative bias對照圖,其實測與模擬皆能有95%的機率為相似的資料分布,顯示模式能有效合理的模擬魚類生物量變化。整體而言,AQUATOX模式對長期的溪流水質與魚類生物量有相當合理及滿意的模擬能力。研究結果可提供環境決策者作為汙染管制或改善措施的參考,並可同時評估水域生態之變化,以有效管理生物族群與執行保育工作,達到生物資源永續利用之目的。
論文英文摘要:Not only does the Feitsui reservoir watershed preserve the domestic water resource to the Great Taipei Metropolitan area, but it also provides upstream water bodies for recreations and travels. Moreover, it facilitates the prosperous aquatic ecosystem that creates natural habitats for numerous species of fishes to grow and reproduce. To measure several aquatic environmental factors and assess ecosystem for appropriate living, management authority has carried out the continuous aquatic ecological survey. However, comprehensive water quality monitoring and aquatic ecological survey at watershed scale are usually unpractical, especially in spatially diverse watershed due to their expensive and time-consuming characteristics. Therefore, mathematical water quality and ecosystem modeling may apply to make up for the insufficient monitoring data and provide more detailed information to decision maker for effective environmental management of biological resources.
This study aims to apply SWAT (Soil and water Assessment Tool) model for generating runoff and nutrient loadings from watershed upland and employ an aquatic ecosystem model, AQUATOX, to assess the variation of water quality and fish biomasses. The capability of AQUATOX model for applying in Taiwan aquatic ecosystem is investigated as well. The AQUATOX model simulates the fate of various pollutants and their effects on the ecosystem, including fish, invertebrates, and aquatic plants. First, data of climate, physiographic, hydrologic and water quality from year 1995 to 2014 within Feitsui reservoir watershed were collected for SWAT model’s calibration and validation. Additionally, seven species of fishes were similated by AQUATOX in comparison to the observing data for model’s ecaluation.
The results show that AQUATOX performs reasonable monthly nutrient predictions, especially for the total nitrogen with satisfactory efficiency coefficient of over 0.6. Furthermore, Goby and Sweetfish simulations in AQUATOX show the best performance amomg all fishes. The distributions of observing and modeling data present on significant differences in mean and standard deviation via statistical hypothesis test. Predictions of Bagrid catfish, Taiwan torrent carp, Round snout, Pale chub, and River loach show bigger differences in standard deviations in comparison to observation data. However, the scattered plots of F statistics vs. Relative Bias imply that the simulating and monitoring data distributions of these five fishes are similar with 95% probability. It is concluded that the AQUATOX model performs reasonable fish biomass predictions, especially the highly uncertainty within sampling and modeling taking into consideration. Overall, the simulations of the AQUATOX model in steram water quality and biomass of fishes in Feitsui reservoir watershed show promising results in response to field realities. The accomplishments of this study provide a better decision making guidance for watershed managements in order to control water quality and assess the biomass variation of ecosystem, which leads to effectively conserve and manage the biological resources for sustainable availability.
論文目次:摘 要 i
誌 謝 v
目 錄 vi
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 3
1.4研究架構及流程 4
第二章 文獻回顧 6
2.1翡翠水庫水質與魚類 6
2.2 AQUATOX模式之應用 13
第三章 研究方法 16
3.1 SWAT模式 16
3.2 AQUATOX模式 20
3.2.1模式沿革 20
3.2.2模式介紹 21狀態變量 22參數庫 23
3.2.3模式結構 24物理模擬 24生物模擬 29再礦化模擬 37
3.3研究區域 45
3.4模擬架構 46
3.4.1推估集水區陸域之逕流與營養鹽負荷 46
3.4.2 SWAT模式推估方法 46
3.4.3 AQUATOX模式分段模擬 53
3.5資料蒐集 54
3.5.1上游溪流地文資料 54
3.5.2上游溪流水文與氣象資料 54
3.5.3上游溪流水質資料 55
3.5.3上游溪流魚類資料 56
3.5.4食物網設置 58
3.6配適度指標 60
第四章 結果與討論 63
4.1 SWAT模式檢定驗證結果 63
4.1.1坪林站流量 67
4.1.2坪林站泥砂 69
4.1.3營養鹽模擬 71
4.2 AQUATOX模式參數檢定結果 81
4.2.1水質模擬結果 82
4.2.2藻類模擬結果 105
4.2.3魚類模擬結果 109
4.2.4水質與魚類相關性 128
4.2.5 AQUATOX模式小結 128
第五章 結論與建議 129
5.1結論 129
5.2建議 130
參考文獻 132
附錄A:魚類照片 136
論文參考文獻:1. Yosefali, A.-M., Nematollah, K., Khalil Talebi, Seyed, H.H., Gholamreza, R. and Fatemeh, B.-K. (2011). Diazinon Fate and Toxicity in the Tajan River (Iran) Ecosystem. Environmental Engineering Science, Volume 28, pp.859-868.
2. Chun Gyeong Yoon, Han-Pil Rhee, Yeongkwon Son. (2016). Applicability study of ecological impact assessment using AQUATOX model in Paldang Reservoir, South Korea. Desalination and Water Treatment, 0091.indd, pp.1-9.
3. Brenda Rashleigh, M.C. Barber, David, M.W. (2008). Foodweb modeling for polychlorinated biphenyls (PCBs) in the Twelvemile Creek Arm of Lake Hartwell, South Carolina, USA. Ecological Modelling, 220, pp.254-264.
4. Sourisseau, S., Anne, B., Frederic, P., Thierry, C. (2007). Calibration, validation and sensitivity analysis of an ecosystem model applied to artificial streams. Water Research, 42, pp.1167-1181.
5. Lulu Zhang, Jingling Liu, Yi Li, Yanwei Zhao. (2013). Applying AQUATOX in determining the ecological risk assessment of polychlorinated biphenyl contamination in Baiyangdian Lake, North China. Ecological Modelling, 265, pp.239-249.
6. Laura Grechi, Antonio Franco, Luca Palmeri, Alberto Pivato, Alberto Barausse. (2016). An ecosystem model of the lower Po river for use in ecological risk assessment of xenobiotics. Ecological Modelling, 332, pp.42-58.
7. Mose, B.S. (1983). Introduction to Tropical Fisherise, Ibadan University Press, UNESCO/ICSU, part, pp.102-105.
8. Santhosh, B. and Singh, N.P. (2007). Guidelines for water quality management for fish culture in Tripura, ICAR Research Complex for NEH Region, Tripura Center, Publication no.29.
9. Bhatnagar, A., Jana, S.N., Garg, S.K., Patra, B.C., Singh, G. and Barman, U.K. (2004). Water quality management in aquaculture, In: Course Manual of summerschool on development of sustainable aquaculture technology in fresh and Saline waters, CCS Haryana Agricultural, Hisar (India), pp.203-210.
10. Reid, G. McG., Contreras MacBeath, T. and Csatadi, K. (2013). Global challenges in freshwater fish conservation related to public aquariums and the aquarium industry. International Zoo Yearbook 47(1), pp.6-45.
11. Park, R.A., Clough, J.S., M.C. Wellman. (2008). AQUATOX: Modeling environmental fate and ecological effects in aquatic ecosystems. Ecological Modelling, 213, pp.1-15.
12. Palomares, M.L., B. Yulianto, L. Puy, D. Bengen and A. Belaud. (1993). A preliminary model of the Garonne River (Toulouse, France) ecosystem in Spring. Trophic Models of Aquatic Ecosystems, pp.172-179.
13. Reynolds, C.S. (2006). Ecology of Phytoplankton. Cambridge University Press, Chapter 1 Phytoplankton, pp.25-26.
14. Park, R.A., Clough, J.S. (2014). Modeling Environmental fate and ecological effects in Aquatic ecosystems, Volume 2: Technical Documentation, AQUATOX Release 3.1 plus, U.S. EPA.
15. Stanford L. Loeb and Anne Spacie. Eds. (1994). Biological monitoring of aquatic systems. Ann Arbor Mich, U.S.
16. Clough, J.S., Warren P.C. (2012). Modeling Environmental fate and ecological effects in Aquatic ecosystems, Technical note 3: Modeling water flows with AQUATOX release 3.1, U.S. EPA, pp.5-9.
17. Niu Z., Gou, Q., Wang, X., Zhang, Y. (2016). Simulation of a water ecosystem in a landscape lake in Tianjin with AQUATOX: Sensitivity, calibration, validation and ecosystem prognosis. Ecological Modelling 335, pp.54-63.
18. Park, R.A., Clough, J.S. (2013). Modeling Environmental fate and ecological effects in Aquatic ecosystems, Sensitivity Analysis of AQUATOX, U.S. EPA.
19. Bhatnagar, A. and Sigh, G. (2010). Culture fisheries in village ponds: a multi-location study in Haryana, India. Agriculture and Biology Journal of North America, 1(5), pp.961-968.
20. S. L. Neitsch, J. G. Arnold, J. R. Kiniry and J. R. Williams, Soil and Water Assessment Tool Theoretical Documentation Version 2009, Texas: grassland, soil and water research laboratory, agricultural research service, 2011.
21. 王漢泉,台灣河川水質魚類指標,環境檢測通訊雜誌,第40期,行政院環境保護署環境檢驗所,2002。
22. 王漢泉,台灣河川生態全紀錄,展翊文化出版社,2006年,第102-107頁。.
23. 沈世傑,翡翠水庫水生動物與水質關係研究,翡翠水庫管理局成果報告,1991~1993。
24. 曾晴賢,魚類應用於翡翠水庫保全和監測上的研究,翡翠水庫管理局成果報告,1997~1999。
25. 曾晴賢,生態模擬在翡翠水庫保全和監測上的研究,翡翠水庫管理局成果報告,2000。
26. 譚天錫,翡翠水庫水域生態及魚類食性調查與研究,臺北翡翠水庫管理局,1989。
27. 侯文祥,翡翠水庫水生動物多樣性之長期監測,翡翠水庫管理局成果報告,2006~2008。
28. 侯文祥,翡翠水庫水生動物與水質關係監測,翡翠水庫管理局,2014。
29. 陶天麟,台灣淡水魚圖鑑,人人出版社,2006年。
30. 盧道杰,封溪護漁(魚)資料庫建立及政策法規回顧與檢討,行政院農業委員會林務局,2008,第28~29頁。
31. 詹見平,台中縣大甲溪魚類誌,台中縣立文化中心,1994,第36~69頁。
32. 陳義雄、方力行,台灣河川湖泊魚類的生態特性與棲地現況,行政院農業委員會林務局自然保育網,1999。
33. 台灣魚類資料庫,fishdb.sinica.edu.tw/chi/home.php。
34. 余玉賢,台灣淡水魚(I),台灣野生動物資源調查手冊 (3),行政院農業委員會,1990。
35. 魚類全球物種數據庫(Gobal species database of fish species),http://www.fishbase.org/search.php。
36. 王晨光,魚類相變化與水庫水質關係之探討—以翡翠水庫為例,碩士論文,國立台灣大學生物環境系統工程學研究所,臺北,2007。
37. 簡傳彬,環境生態管理及整合性利用之研究:以臺北水源特定區為例,財團法人農業工程研究中心,2005~2009。
38. 譚智宏,臺北水源特定區生態調查監測計畫,財團法人農業工程研究中心,2011~2012。
39. 臺北翡翠水庫管理局,翡翠水庫操作年報,1995~2014。
40. 黃譯萱,評估翡翠水庫集水區營養鹽負荷對水質與藻類生態之影響,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2012。
41. 臺北水源特定區管理局水質監測統計,臺北水源特定區管理局,2005~2012。
42. 交通部中央氣象局,氣象資料開放平台,http://opendata.cwb.gov.tw/index, 2013。
43. 程柏榕,翡翠水庫中上游魚類相與累積降雨及水質影響之研究,碩士論文,國立台灣大學漁業科學研究所,臺北,2016。
44. 劉一新、黃瓊彪,烏來福山村溪流魚類及水質監測,林業試驗所集水區經營組,林業研究專訊,第十九卷,第四期,第65-70頁。
45. 陳立宗,翡翠水庫集水區水文暨水質模擬,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2009。