現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:水庫集水區營養鹽負荷與水生昆蟲 生態模擬之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Modeling Nutrients and Aquatic Insect Ecosystem in a Reservoir Watershed [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:陳麒文
英文姓名:Chi-Wen Chen
研究生學號:104428069
學位類別:碩士
語文別:中文
口試日期:2018/07/30
論文頁數:101
指導教授中文名:朱子偉
口試委員中文名:朱子偉;陳世楷;譚智宏;侯善麟
中文關鍵詞:AQUATOX模式SWAT模式水生昆蟲生態非點源汙染營養鹽
英文關鍵詞:AQUATOX modelSWAT modelaquatic insect ecosystemnonpoint source pollutionnutrients
論文中文摘要:水庫集水區蘊含大量水資源以及豐富的生態,且其為公共用水之重要來源,維護良好的水質格外重要。若要評估水體受汙染影響程度,可藉由水質監測判斷,水域中的生物組成變化,更是觀察水質變化的重要指標。
集水區之水質與生物監測卻容易因為時間、人物力與經費……等因素造成許多施行上的困難。然而生態調查又為瞭解集水區生態環境變遷之重要工作。因此,合理的水質與生態模式之模擬結果,可以用於輔助生態監測資料之不足,亦能提供決策者更充實的參考數據,將有助於維護管理集水區生態。
本研究旨在應用SWAT(Soil and Water Assessment Tool)模式模擬翡翠水庫集水區陸域中之水文與營養鹽負荷,並將結果結合水生生態系統模式AQUATOX,評估水生昆蟲生物量,並探討AQUATOX模式於模擬台灣水域生態環境之適用性。研究中收集翡翠水庫集水區1995至2014年共二十年氣象、水文、水質及地文資料進行SWAT模式模擬。另坪林、碧湖及闊瀨測站之水生昆蟲觀測值共歸類成五目(雙翅目、蜉蝣目、襀翅目、毛翅目與蜻蛉目),於AQUATOX模式模擬並評估。
研究結果顯示SWAT模式於翡翠水庫集水區之長期水文水質模擬十分合理,總氮與總磷之年模擬效率係數分別可達0.83和0.59。而在水棲昆蟲生物量模擬,以襀翅目結果最佳,其模擬值與觀測值之資料分布經統計檢定均無顯著差異,顯示模擬分佈能適當呈現田野狀況。雙翅目、蜉蝣目、毛翅目與蜻蛉目之模擬雖稍差,但若從F statistics v.s. Relative Bias圖檢視,其模擬與觀測值皆能有95%的機率為相似的資料分布,進一步再考慮生物採樣與模擬之高度不確定性,AQUATOX模擬結果實屬相當合理。總體而言,AQUATOX應用於翡翠水庫集水區之水棲昆蟲生物量模擬,能合理的反應實測資料分布,可作為日後評估情境影響水生生態風險之基礎。
論文英文摘要:Reservoir watershed with abundant water resources and rich ecologies needs to be preserved and protected, especially when it serves the domestic water supply. To examine the pollution extend of water body, regular water quality monitoring is under operation. Moreover, the change of creature composition in the aquatic ecosystem turns to be another useful index in response to water quality variation. Comprehensive water quality and aquatic ecology monitoring at watershed scale is usually unpractical due to its expensive and time-consuming characteristics. Therefore, reasonable water quality and ecosystem simulations may apply to make up for the insufficient monitoring data and provide more detailed information to decision maker for effective management of watershed ecosystem.
This study aims to apply SWAT (Soil and Water Assessment Tool) model for generating runoff and nutrient loadings from upland and employ an aquatic ecosystem model, AQUATOX, to assess the variation of aquatic insect biomasses. The applicability of AQUATOX model in Taiwan aquatic ecosystem is investigated as well. First, data of climate, physiographic, hydrologic and water quality from year 1995 to 2014 within Feitsui reservoir watershed were collected for SWAT model’s calibration and validation. Additionally, the observing data of aquatic insects were classified into five orders and simulated in AQUATOX to evaluate the model’s performance.
The results indicate that SWAT performs satisfactory hydrologic and water quality simulations on long term basis. The efficiency coefficient of yearly total nitrogen and total phosphorus predictions could reach 0.83 and 0.59, respectively. Furthermore, insects of Stonefly simulations in AQUATOX show the best performance among all aquatic insects. The distributions of observing and modeling data present no significant differences in mean and standard deviation via statistical hypothesis tests. Insect simulations of Chironomid, Mayfly, Caddisfly, and Odonata show bigger differences in standard deviations in comparison to observations. However, the scattered plots of F statistics vs Relative Bias imply that the simulating and monitoring data distributions of the other four orders are similar with 95% probability. It is concluded that the AQUATOX model performs reasonable insect biomass predictions, especially the highly uncertainty within sampling and modeling taking into consideration. Overall, the applications of the AQUATOX model for water quality and biomass of aquatic insects in Feitsui reservoir watershed show promising results in response to field realities. In addition, the AQUATOX will be a useful management tool to assess the impacts and risks of aquatic ecosystem under proposed hazardous scenarios.
論文目次:中文摘要 i
英文摘要 iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1研究背景 1
1.2研究目的 2
1.3研究架構及流程 3
第二章 文獻回顧 5
2.1生態監測 5
2.1.1臺北水源特定區生態調查計畫 5
2.1.2翡翠水庫水生動物與水質關係 6
2.1.3翡翠水庫集水區水質監測 6
2.1.4生態監測小結 7
2.2 AQUATOX模式 8
2.3 SWAT模式 10
2.4 文獻回顧小結 11
第三章 材料與方法 12
3.1 SWAT模式介紹 12
3.1.1 HRU(Hydrologic Response Unit) 13
3.1.2天氣產生器 13
3.1.3水文 14
3.1.4泥砂 15
3.1.5營養鹽 16
3.2 AQUATOX模式介紹 16
3.2.1變數 17
3.2.2參數 17
3.2.3形態測量學 18
3.2.4再礦化模擬 20
3.2.5生物模擬 27
3.2.6多河段鏈接 32
3.2.7模式演算方法 32
3.3研究區域 33
3.3.1土地利用分佈 34
3.3.2土壤種類分佈 35
3.3.3研究區域內監測站分佈 36
3.4資料收集 38
3.5模擬階段 42
3.5.1 SWAT Model集水區陸域營養鹽負荷推估 43
3.5.2 AQUATOX Model集水區水生生態模擬 45
3.6模式檢定驗證 48
3.7配適度檢定 54
第四章 結果與討論 57
4.1 SWAT模式參數檢定結果 57
4.2 SWAT模式模擬結果 62
4.2.1流量模擬結果 62
4.2.2營養鹽模擬結果 64
4.3 SWAT模式小結 70
4.4 AQUATOX模式參數檢定結果 70
4.5 AQUATOX模式模擬結果 72
4.5.1營養鹽模擬結果 72
4.5.2溶氧模擬結果 74
4.5.3藻類模擬結果 75
4.5.4水生昆蟲生物量模擬結果 79
4.6 AQUATOX模式小結 86
第五章 結論與建議 88
5.1結論 88
5.2建議 89
參考文獻 90
附錄A:SWAT模式模擬結果 95
附錄B:水生昆蟲種類圖 101
論文參考文獻:1. Alexander, G. R., and D. S. Shetter. 1961. Seasonal mortality and growth of hatchery-reared brook and rainbow trout in East Fish Lake, Montmorency County, Michigan, 1958 -5 9. Pap . Mich. Acad. Sci., Arts Lett. 46,317-328.
2. Allan, J. D. 1995. Stream Ecology: Structure and Function of Running Waters. Chapman & Hall, London.
3. Arnold, J.G., Kiniry, J.R., Srinivasan, R., et al., “Soil mand Water Assement Tool Input/Output Documentation Version 2012”, 2012.
4. Blancher, E. C., R. A., Clough, J. S., Milroy, S. P., Graham, W. M., Rakocinski, C. F., Leaf, R. (2017). Establishing nearshore marine secondary productivity baseline estimates for multiple habitats in coastal Mississippi and Alabama using AQUATOX 3.1 NME for use in the Deepwater Horizon natural resource damage assessment. Ecological Modelling, 359, 49-68. doi: 10.1016/j.ecolmodel.2017.05.004
5. Carpenter, S. R. and J. F. Kitchell, editors. 1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge.
6. Collins, C. D. and J. H. Wlosinski. 1983. Coefficients for Use in the U.S. Army Corps of Engineers Reservoir Model, CE-QUAL-R1. Tech. Rept. E-83-15, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
7. Frouz, J., A. Ali, and R. J. Lobinske. 2002. Influence of temperature on developmental rate, wing length, and larval head capsule size of pestiferous midge Chironomus crassicaudatus (Diptera: Chironomidae). J. Econ. Entomol. 95:699-705.
8. Grechi, L., Franco, A., Palmeri, L., Pivato, A., & Barausse, A. (2016). An ecosystem model of the lower Po river for use in ecological risk assessment of xenobiotics. Ecological Modelling, 332, 42-58. doi: 10.1016/j.ecolmodel.2016.03.008
9. Hill, W. R. and G. E. Napolitano. 1997. PCB Congener Accumulation by Periphyton, Herbivores, and Omnivores. Archives of Environmental Contamination and Toxicology 32:449-455.
10. Jørgensen, S. E., editor. 1979. Handbook of Environmental Data and Ecological Parameters. Pergamon Press, Oxford.
11. Keitzer, S. C., Ludsin, S. A., Sowa, S. P., Annis, G., Arnold, J. G., Daggupati, P., . . . Rewa, C. A. (2016). Thinking outside of the lake: Can controls on nutrient inputs into Lake Erie benefit stream conservation in its watershed? Journal of Great Lakes Research, 42(6), 1322-1331. doi: 10.1016/j.jglr.2016.05.012
12. Koelmans, A.A., Van der Heidje, A., Knijff, L.M., Aalderink, R.H., 2001. Integrated modelling of eutrophication and organic contaminant fate & effects in aquatic ecosystems. A review. Water Res. 35, 3517–3536.
13. Kitchell, J. F., D. J. Stewart, and D. Weininger. 1977. Applications of a Bioenergetics Model to Yellow Perch (Perca flavescens) and Walleye (Stizostedion vitreum vitreum). Jour. Fish. Res. Board Canada 34:1922-1935.
14. Lamba, J., Thompson, A. M., Karthikeyan, K. G., Panuska, J. C., & Good, L. W. (2016). Effect of best management practice implementation on sediment and phosphorus load reductions at subwatershed and watershed scale using SWAT model. International Journal of Sediment Research, 31(4), 386-394. doi: 10.1016/j.ijsrc.2016.06.004
15. Le Cren, E. D., and R. H. Lowe-McConnell, editors. 1980. The Functioning of Freshwater Ecosystems. Cambridge University Press, Cambridge.
16. Lyman, W. J., W. F. Reehl, and D. H. Rosenblatt. 1982. Handbook of Chemical Property Estimation Methods. McGraw-Hill, New York.
17. Leidy, G. R. and R. M. Jenkins. 1977. The Development of Fishery Compartments and Population Rate Coefficients for Use in Reservoir Ecosystem Modeling. CR-Y-77-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
18. Leidy, G. R . , and G. R. Ploskey. 1980. Simulation modeling of zooplankton and benthos in reservoirs:Documentation and devel opment of model constructs. Tech. Report E-80 -4 . U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
19. Martin, J.L., Ambrose, R.A., Wool, T.A., 2006. WASP7 Benthic Algae—Model Theory and User’s Guide. U.S. Environmental Protection Agency, Athens, GA.
20. Motsinger, J., Kalita, P., & Bhattarai, R. (2016). Analysis of Best Management Practices Implementation on Water Quality Using the Soil and Water Assessment Tool. Water, 8(4), 145. doi: 10.3390/w8040145
21. Niu, Z., Gou, Q., Wang, X., & Zhang, Y. (2016). Simulation of a water ecosystem in a landscape lake in Tianjin with AQUATOX: Sensitivity, calibration, validation and ecosystem prognosis. Ecological Modelling, 335, 54-63. doi: 10.1016/j.ecolmodel.2016.05.003
22. Park, R. A., J. S. Clough, and M. C. Wellman, 2008, AQUATOX: Modeling Environmental Fate and Ecological Effects in Aquatic Ecosystems. Ecological Modelling Volume 213,pp: 1-15.
23. Pritchard, G. and M. A. Leggott. 1987. Temperature, Incubation Rates and Origins of Dragonflies. Adv. Odonatol. 3:121-126.
24. Quinn, J. M., G. L. Steele, C. W. Hickey, and M. L. Vickers. 1994. Upper thermal tolerances of twelve New Zealand stream invertebrate species. New Zealand Journal of Marine and Freshwater Research 28:391-397.
25. Redfield, A. C. 1958. The Biological Control of Chemical Factors in the Environment. American Scientist 46::205-222.
26. Rashleigh, B. (2003). Application of AQUATOX, a Process-Based Model for Ecological Assessment, to Contentnea Creek in North Carolina. Journal of Freshwater Ecology, 18(4), 515-522. doi: 10.1080/02705060.2003.9663992
27. Rashleigh, B., Barber, M. C., & Walters, D. M. (2009). Foodweb modeling for polychlorinated biphenyls (PCBs) in the Twelvemile Creek Arm of Lake Hartwell, South Carolina, USA. Ecological Modelling, 220(2), 254-264. doi: 10.1016/j.ecolmodel.2008.09.007
28. Scholz-Starke, B., Bo, L., Holbach, A., Norra, S., Floehr, T., Hollert, H., Ottermanns, R. (2018). Simulation-based assessment of the impact of fertiliser and herbicide application on freshwater ecosystems at the Three Gorges Reservoir in China. Sci Total Environ, 639, 286-303. doi: 10.1016/j.scitotenv.2018.05.057
29. Sharma, D., & Kansal, A. (2012). Assessment of river quality models: a review. Reviews in Environmental Science and Bio/Technology, 12(3), 285-311. doi: 10.1007/s11157-012-9285-8
30. Taner, M. Ü., Carleton, J. N., & Wellman, M. (2011). Integrated model projections of climate change impacts on a North American lake. Ecological Modelling, 222(18), 3380-3393. doi: 10.1016/j.ecolmodel.2011.07.015
31. Wu, Y., & Liu, S. (2012). Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin. J Environ Monit, 14(9), 2350-2361. doi: 10.1039/c2em30278k
32. Winberg, G. G. 1971. Symbols, Units and Conversion Factors in Studies of Freshwater Productivity. International Biological Programme Central Office, London.
33. Zeiger, S. J., & Hubbart, J. A. (2016). A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA. Sci Total Environ, 572, 232-243. doi: 10.1016/j.scitotenv.2016.07.178
34. Zhang, L., J. Liu, Y. Li, and Y. Zhao. 2013. Applying AQUATOX in determining the ecological risk assessment of polychlorinated biphenyl contamination in Baiyangdian Lake, North China. Ecological Modelling 265:239-249.
35. 林育丞. (2012). 翡翠水庫集水區非點源汙染削減效率評估與不確定性分析. (碩士論文), 國立臺北科技大學土木與防災研究所, 臺北.
36. 施恆益. (2013). 應用概似不確定估計(GLUE)於翡翠水庫集水區營養鹽總最大日負荷規劃. (碩士論文), 國立臺北科技大學土木與防災研究所, 臺北.
37. 陳立宗. (2009). 翡翠水庫集水區水文暨水質模擬. (碩士論文), 國立臺北科技大學土木與防災研究所, 臺北.
38. 趙柏翰. (2017). 應用SWAT評估集水區水傳播微生物之適宜性研究. (碩士論文), 國立臺北科技大學土木與防災研究所, 臺北.
39. 黃宇齊. (2010). 翡翠水庫集水庫集水區水文暨水質模擬.與其不確定性 (碩士論文), 國立臺北科技大學土木與防災研究所, 臺北.
40. 吳俊宗(2001-2004)「翡翠水庫藻類與水質關係之長期監測」,臺北翡翠水庫管理局委託,中央研究院植物研究所執行
41. 臺北翡翠水庫管理局(1997~2014),翡翠水庫操作年報,臺北翡翠水庫管理局,臺北市。
42. 張尊國、張文亮、鄭克聲、林裕彬、徐貴新、魏敏裕(2006),翡翠水庫水源保護區污染源調查計畫,行政院環境保護署委託。
43. 譚智宏.(2011-2012),台北水源特定區生態調查監測計畫,財團法人農業工程研究中心
44. 簡傳彬(2005-2009),環境生態管理及整合性利用之研究:以台北水源特定區為例,財團法人農業工程研究中心
45. 喬治•麥葛文(2000),昆蟲圖鑑,貓頭鷹出版社
46. 陳欣得(2006),統計學-假設檢定,靜宜大學企管系
論文全文使用權限:同意授權於2021-08-28起公開