現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:自充填混凝土早齡期收縮行為之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Shrinkage Behavior of Self-Compacting Concrete at Very Early Age [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:陳冠宏
英文姓名:Guan-Hong Chen
研究生學號:104428008
學位類別:碩士
語文別:中文
口試日期:2018/07/30
論文頁數:164
指導教授中文名:黃中和
口試委員中文名:顏聰;宋佩瑄;陳振川;黃中和
中文關鍵詞:自充填混凝土自體收縮乾燥收縮波紋管法
英文關鍵詞:Self-Compacting ConcreteAutogenous shrinkageDrying shrinkageCorrugated tube method
論文中文摘要:混凝土收縮造成體積不穩定為其缺點之一。一般混凝土收縮量測多採長度變化為主,惟受限於量測方法,需於24小時脫模後始能對試體進行量測,無法量得1天齡期內之收縮量。為此,本文採波紋管法進行收縮及溫度量測,藉以瞭解自充填混凝土(SCC)超早齡期(拆模前)的收縮行為。在材料組成律考慮上,SCC水膠比固定為0.37,取用三種不同卜作嵐材料取代率(20 %、45 %、70 %)及四種不同飛灰與爐石粉重量比(0 %、20%、50 %、100 %),製作波紋管及標準試體,以進行乾燥收縮、自體收縮,及溫度之量測。
試驗結果顯示,波紋管法可成功量得自充填混凝土1天齡期內的收縮量;各齡期收縮值扣除1天齡期收縮量,則波紋管法結果與標準試驗者相接近。波紋管試驗結果可知,1天齡期SCC自體收縮量變化於17~82 μm/m,10天齡期者為91~188 μm/m,平均占比為40 %;1天乾燥收縮量介於27~81 μm/m之間,10天乾縮量則為185~374 μm/m,占比約為20 %。SCC於1天齡期均有發生自體收縮與乾燥收縮,且自體收縮影響相較乾燥收縮者為明顯。在SCC配比中,卜作嵐材料取代水泥重量百分率由20 %增加至70%時,1天齡期自體收縮量及乾燥收縮量分別變化於82~17 μm/m及73~57 μm/m,兩種收縮量分別降低79 %及22 %。顯示添加卜作嵐材料可減緩早齡期SCC收縮量。當飛灰與爐石粉重量比由0 %提高至100 %時,1天齡期之自體收縮量及乾燥收縮量分別為 73~44 μm/m及81~27 μm/m;完全使用飛灰者(100 %)相對於完全爐石粉者(0 %),SCC自體收縮量與乾燥收縮量分別可降低39 %及68 %,顯示低水化反應的飛灰使用,對抑制SCC收縮發生較為顯著。溫度量測結果顯示,卜作嵐材料取代率由20 %提高至70 %時,SCC最高溫度由29.4 降至26.1 ;當飛灰與爐石粉重量比由0 %提高至100 %時,最高溫度由25.4 降至24.8 ;兩變數對SCC溫度之影響均不明顯。
論文英文摘要:Volume stability is one of the disadvantages of concrete, due to the shrinkage of concrete. In general, the measurement of the shrinkage amount of concrete mostly uses a change in length. Limited by the measurement method, the measurement needs to be carried out after 24 hours and demolding, so that the amount of shrinkage strain within 1 day age cannot be measured. Because of this factor, the corrugated tube method is used to measure the shrinkage and temperature, and to understand the shrinkage behavior of Self-Compacting Concrete (SCC) in the very early age (before demoulding). In terms of material composition law, the water-binder ratio 0.37 was adopted in all SCC mixtures. In this study, three different pozzolan replacement ratios (20%, 45%, 70%) and four different fly ash to slag powder weight ratios (0%, 20%, 50%, 100%) were be considered in the SCC mix proportion. The corrugated tube and standard test specimens were both carried out the tests included dry shrinkage, autogenous shrinkage, and temperature measurement.
The test results show that the shrinkage strain of self-compacting concrete in one day age can be successfully measured by the corrugated tube method. Deducting the shrinkage strain of each age from the 1-day-age shrinkage strain, the results of the corrugated tube method were found to be close to those of the standard tester. According to the test results of the corrugated tube method, the autologous shrinkage strain of SCC at 1 day age varies from 17 to 82 μm/m, and that of 10 days age is 91 to 188 μm/m, with an average ratio of 40%. The dry shrinkage strain at 1 day age ranged from 27 to 81 μm/m, and the dry shrinkage strain at 10 days age ranged from 185 to 374 μm/m, accounting for about 20%. SCC has autologous shrinkage strain and dry shrinkage strain at 1 day age, and the effect of autologous shrinkage is more obvious than that of dry shrinkage strain. In the SCC mix proportion, when the weight percentage of the cement replaced by pozzolan materials is increased from 20% to 70%, the autologous shrinkage strain and dry shrinkage strain of the 1-day-age specimen vary from 82 to 17 μm/m and 73 to 57 μm/m, respectively. The amount of shrinkage strain decreased by 79% and 22%, respectively. This result shows that addition of pozzolan materials can reduce the SCC shrinkage strain in early age. When the weight ratio of fly ash to slag powder was increased from 0% to 100%, the autogenous shrinkage strain and dry shrinkage strain of the 1-day-age specimen were 73~44 μm/m and 81~27 μm/m, respectively. For specimens using full fly ash (100%), the SCC autogenous shrinkage strain and dry shrinkage strain were reduced by 39% and 68%, respectively, compared to the full slag powder (0%). The results show that the use of fly ash with low hydration reaction is more pronounced for inhibiting SCC shrinkage. The temperature measurement showed that the maximum temperature of SCC decreased from 29.4 to 26.1 when the substitution rate of pozzolan materials increased from 20% to 70%, and the maximum temperature when the weight ratio of fly ash to slag powder increased from 0% to 100%. From 25.4 to 24.8 ; the effect of these two variables on the SCC temperature is not obvious.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 vi
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究方法與流程 3
第二章 文獻回顧 5
2.1 混凝土之收縮行為 5
2.1.1 乾燥收縮 5
2.1.2 自體收縮 8
2.1.3 塑性收縮 9
2.1.4 碳化收縮 10
2.2 混凝土收縮預測式 11
2.2.1 美國混凝土學會之混凝土收縮預測式 11
2.2.2 歐洲混凝土委員會之混凝土收縮預測式 15
2.2.3 其它混凝土收縮預測式 19
2.2.4 混凝土收縮預測式之比較 26
2.3 收縮量測方法 28
2.3.1 硬固混凝土收縮規範試驗法 28
2.3.2 模具法 31
2.3.3 體積法 33
2.3.4 布拉格光纖光柵試驗 33
2.4 混凝土溫度變形 35
2.4.1 水化熱 35
2.4.2 熱膨脹係數 38
2.4.3 混凝土溫度變形 40
2.5 自充填混凝土之簡介 41
2.5.1 自充填混凝土分類與等級 41
2.5.2 配比設計法 43
2.5.3 新拌性質檢驗方法 47
2.5.4 強度性質 51
2.5.5 體積穩定性 53
第三章 實驗計畫 85
3.1 混凝土材料及配比計算 85
3.1.1 混凝土材料 85
3.1.2 配比設定參數 86
3.2 試驗儀器 87
3.2.1 基本性質試驗 87
3.2.2 體積變化量測系統 87
3.2.3 新拌性質試驗 88
3.2.4 力學性質試驗 90
3.3 試驗方法 90
3.3.1 材料性質試驗 90
3.3.2 混凝土拌和程序與試體製作 92
3.3.3 新拌性質試驗 95
3.3.4 體積變化量測 97
3.3.5 力學性質試驗 98
3.4 試體變數與試體編碼說明 99
3.4.1 試驗變數及配比介紹 99
3.4.2 試驗組別編碼說明 100
第四章 試驗結果分析與討論 115
4.1 自充填混凝土之工程性質 115
4.1.1 工作性 115
4.1.2 凝結時間 117
4.1.3 抗壓強度 119
4.1.4 抗彎強度 121
4.2 早齡期自充填混凝土之收縮量測 124
4.2.1 標準規範收縮量測 124
4.2.2 波紋管收縮量測 126
4.2.3 量測方式之比較 127
4.3 卜作嵐材料用量對於自充填混凝土收縮之影響 128
4.3.1 不同卜作嵐材料取代率之自充填混凝土自體收縮 128
4.3.2 不同飛灰與爐石粉重量比之自充填混凝土自體收縮 129
4.3.3 不同卜作嵐材料取代率之自充填混凝土乾燥收縮 130
4.3.4 不同飛灰與爐石粉重量比之自充填混凝土乾燥收縮 131
4.4 自充填混凝土之溫度變形 132
4.4.1 不同齡期之自充填混凝土溫度變形 132
4.4.2 卜作嵐材料對於自充填混凝土溫度變形之影響 133
第五章 結論與建議 152
5.1 結論 152
5.1.1 早齡期自充填混凝土之收縮量測 152
5.1.2 卜作嵐材料取代率對於收縮應變之影響 153
5.1.3 飛灰與爐石粉重量比對於收縮應變之影響 153
5.1.4 卜作嵐材料添配率對於溫度歷程之影響 154
5.1.5 卜作嵐材料添配率對於工程性質之影響 154
5.2 建議 155
參考文獻 156
論文參考文獻:[1]. Wojciech Piasta and Bartlomiej Zarzycki (2017.06), “The effect of cement paste volume and w/c ratio on shrinkage strain, water absorption and compressive strength of high performance concrete,” Construction and Building Materials. Vol. 140, pp. 395-402.
[2]. P. Kumar Mehta and Paulo J. M. Monteiro (2013.12), “Concrete Microstructure, Properties, and Materials,” 4th Edition, ISBN: 9780071797870, New York: McGraw-Hill Education.
[3]. J. M. Khatib (2008.09), “Performance of self-compacting concrete containing fly ash,” Construction and Building Materials. Vol. 22, pp. 1963-1971.
[4]. Stefanus A. Kristiawan and M. Taib M. Aditya (2015.11), “Effect of high volume fly ash on shrinkage of self-compacting concrete,” Procedia Engineering. Vol. 125, pp. 702-712.
[5]. 顏聰 (2017.08),「土木材料」,第五版,ISBN:957-41-3397-4,台中市:自行發行。
[6]. Kasm Mermerdas, Erhan Güneyisi, Mehmet Gesog lu and Turan Özturan (2013.06), “Experimental evaluation and modeling of drying shrinkage behavior of metakaolin and calcined kaolin blended concretes,” Construction and Building Materials. Vol. 43, pp. 337-347.
[7]. 黃然,紀茂傑,林世堂,謝紹恒 (103.12),「混凝土收縮開裂機理及防制技術之研究」,內政部建築研究所委託研究報告,PG10301-0464。
[8]. 洪崇嚴 (2000),「台灣地區氣候對自充填混凝土乾縮之影響」,碩士學位論文,台北市:國立台灣大學土木工程學研究所。(指導教授:陳振川)
[9]. Sidney Mindess, J. Francis Young and David Darwin (2003), “Concrete,” 2nd Edition, ISBN: 9780130646323, London: Pearson Education.
[10]. 張登祥,楊偉軍 (2011.09),「自乾燥混凝土相對濕度變化理論及試驗研究」,長江科學院院報,第28卷,第9期,第44~47頁。
[11]. Xiang Hu, Zhenguo Shi, Caijun Shi, Zemei Wu, Baihui Tong, Zhihua Ou and Geert de Schutter (2017.05), “Drying shrinkage and cracking resistance of concrete made with ternary cementitious components,” Construction and Building Materials. Vol. 149, pp. 406-415.
[12]. Wang Qiang, Yan Peiyu, Yang Jianwei and Zhang Bo (2013.07), “Influence of steel slag on mechanical properties and durability of concrete,” Construction and Building Materials. Vol. 47, pp. 1414-1420.
[13]. Gholamreza Fathifazl, A. Ghani Razaqpur, O. Burkan Isgor, Abdelgadir Abbas, Benoit Fournier and Simon Foo (2011.08), “Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate,” Cement & Concrete Composites. Vol. 33, pp. 1026-1037.
[14]. Musbau Ajibade Salau, Efe Ewaen Ikponmwosa and Adesola O. Adeyemo (2014.02), “Shrinkage Deformation of Concrete Containing Recycled Coarse Aggregate,” British Journal of Applied Science & Technology. Vol. 4, No. 3, pp. 1791-1807.
[15]. Erhan Gu¨neyisi, Mehmet Gesog˘lu and Kasım Mermerdas (2007.09), “Improving strength, drying shrinkage, and pore structure of concrete using metakaolin,” Materials and Structures. Vol. 41, pp. 937-949.
[16]. Zhi Hai He, Rui Qian Wu, Yan Fei Yu and Yue Qing Gao (2017.01), “Effect of Lithium Slag on Drying Shrinkage of Concrete with Manufactured-sand,” Journal of Residuals Science & Technology. Vol. 14, No. 1, pp. 171-176.
[17]. Alexandra Passuello, Giacomo Moriconi and Surendra P. Shah (2009.08), “Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers,” Cement & Concrete Composites. Vol. 31, pp. 699-704.
[18]. M. H. Zhang, C. T. Tam and M. P. Leow (2003.04), “Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete,” Cement and Concrete Research. Vol. 33, pp. 1687-1694.
[19]. J. J. Brooks, J. G. Cabrera and M. A. Megat Johari (1999.01),“Factors affecting the autogenous shrinkage of silica fume high-strength concrete,” in: E. Tazawa (Ed.), Autogenous Shrinkage of Concrete. 1st Edition, ISBN: 9781482272123, London: E & FN Spon, pp. 195-202.
[20]. Y. W. Chan, C. Y. Liu and Y. S. Lu (1999.01),“Effects of slag and fly ash on the autogenous shrinkage of high performance concrete,” in: E. Tazawa (Ed.), Autogenous Shrinkage of Concrete. 1st Edition, ISBN: 9781482272123, London: E & FN Spon, pp. 221-228.
[21]. Burcu Akcay and Mehmet Ali Tasdemir (2008.01), “Optimisation of using lightweight aggregates in mitigating autogenous deformation of concrete,” Construction and Building Materials. Vol. 23, pp. 353-363.
[22]. Mohammed Seddik Meddah, Masahiro Suzuki and Ryoichi Sato (2010.07), “Influence of a combination of expansive and shrinkage-reducing admixture on autogenous deformation and self-stress of silica fume high-performance concrete,” Construction and Building Materials. Vol. 25, pp. 239-250.
[23]. Chenhui Jiang, Masahiro Suzuki, Yang Yang, Yong Wang, Yuenian Zhou and Chengchang Ma (2014.04), “Autogenous shrinkage of high performance concrete containing mineral admixtures under different curing temperatures,” Construction and Building Materials. Vol. 61, pp. 260-269.
[24]. Ehsan Ghafari, Seyed Ali Ghahari, Hugo Costa, Eduardo Júlio, Antonio Portugal and Luisa Durães (2016.10), “Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete,” Construction and Building Materials. Vol. 127, pp. 43-48.
[25]. Dejian Shen, Xudong Wang, Dabao Cheng, Jinyang Zhang and Guoqing Jiang (2015.12), “Effect of internal curing with super absorbent polymers on autogenous shrinkage of concrete at early age,” Construction and Building Materials. Vol. 106, pp. 512-522.
[26]. W. Lerch (1957), “Plastic Shrinkage,” ACI Journal. Vol. 53, pp 797-802.
[27]. Muhammad Nasir, Omar S. Baghabra Al-Amoudi and Mohammed Maslehuddin (2017.07), “Effect of placement temperature and curing method on plastic shrinkage of plain and pozzolanic cement concretes under hot weather,” Construction and Building Materials. Vol. 152, pp. 943-953.
[28]. Yang Kai, Zhong Mingquan, Magee Bryan, Yang Changhui, Wang Chong, Zhu Xiaohong and Zhang Zhilu (2017.03), “Investigation of effects of Portland cement fineness and alkali content on concrete plastic shrinkage cracking,” Construction and Building Materials. Vol. 144, pp. 279-290.
[29]. ACI Committee 209 (2008.05), “Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete,” ISBN: 9780870312786, Farmington Hills: American Concrete Institute.
[30]. Zdeneˇk P. Bazˇant (2015.02), “Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability,” Materials and Structures.
[31]. R. V. Silva, J. de Brito and R. K. Dhir (2015.01), “Prediction of the shrinkage behavior of recycled aggregate concrete: A review,” Construction and Building Materials. Vol. 77, pp. 327-339.
[32]. ASTM C157 (2017), “ASTM C157-Standard Test Method for Slump of Hydraulic-Cement Concrete,” ASTM International, West Conshohocken, PA.
[33]. CNS 14603 (2001),「硬固水泥砂漿及混凝土長度變化試驗法」,中華民國國家標準。
[34]. JIS A 1129-3 (2010), “Methods of measurement for length change of mortar and concrete - Part 3 Method with dial gauge,” Japanese Industrial Standards Committee, Japan.
[35]. JIS A 1129-1 (2010), “Methods of measurement for length change of mortar and concrete - Part 1 Method with comparator,” Japanese Industrial Standards Committee, Japan.
[36]. JIS A 1129-2 (2010), “Methods of measurement for length change of mortar and concrete - Part 2 Method with contact-type strain gauge,” Japanese Industrial Standards Committee, Japan.
[37]. E. Tazawa and S. Miyazawa (1999.01),“Effect of constituents and curing condition on autogenous shrinkage of concrete,” in: E. Tazawa (Ed.), Autogenous Shrinkage of Concrete. 1st Edition, ISBN: 9781482272123, London: E & FN Spon, pp. 269-280.
[38]. Jun Zhang, Dongwei Hou and Yudong Han (2012.11), “Micromechanical modeling on autogenous and drying shrinkages of concrete,” Construction and Building Materials. Vol. 29, pp. 230-240.
[39]. O. Mejlhede Jensen and P. Freiesleben Hansen (1995.08), “A dilatometer for measuring autogenous deformation in hardening Portland cement paste,” Materials and Structures. Vol. 28, pp. 406-409.
[40]. Peng Gao, Tongsheng Zhang, Ruifeng Luo, Jiangxiong Wei and Qijun Yu (2014.02), “Improvement of autogenous shrinkage measurement for cement paste at very early age: Corrugated tube method using non-contact sensors,” Construction and Building Materials. Vol. 55, pp. 57-62.
[41]. Marwen Bouasker, Frédéric Grondin, Pierre Mounanga, Arnaud Pertué and Abdelhafid Khelidj (2006.01), “Improved measurement methods for autogenous shrinkage of cement mortars at very early age,” 2nd International Symposium on Advances in Concrete through Science and Engineering. ISBN: 2351580028, Bagneux: RILEM Publications SARL.
[42]. Pietro Lura and Ole Mejlhede Jensen (2007.05), “Measuring techniques for autogenous strain of cement paste,” Materials and Structures. Vol. 40, pp. 431-440.
[43]. Marwen Bouasker, Pierre Mounanga, Roger Coué and Abdelhafid Khelidj (2008.01), “Free autogenous strain of early age cement paste: Metrological development and critical analysis,” Advances in Cement Research. Vol. 20, pp. 75-84.
[44]. Fanghui Han, Xuejiang He, Zengqi Zhang and Juanhong Liu (2017.07), “Hydration heat of slag or fly ash in the composite binder at different temperatures,” Thermochimica Acta. Vol. 665, pp. 202-210.
[45]. Xiang Hu, Caijun Shi, Zhenguo Shi, Baihui Tong and Dehui Wang (2017.08), “Early age shrinkage and heat of hydration of cement-fly ash-slag ternary blends,” Construction and Building Materials. Vol. 153, pp. 857-865.
[46]. Guodong Xu, Qian Tian, Jianxiong Miao and Jiaping Liu (2017.05), “Early-age hydration and mechanical properties of high volume slag and fly ash concrete at different curing temperatures,” Construction and Building Materials. Vol. 149, pp. 367-377.
[47]. Adam M. Neville (2012), “Properties of Concrete,” 5th Edition, ISBN: 9780273786320, Upper Saddle River: Prentice Hall.
[48]. ERMCO (2005.05). “The European guidelines for self-compacting concrete specification, production and use,” The European Ready-mix Concrete Organisation, France.
[49]. S. P. Shah (1994.03), “High Performance Concrete Properties and Applications,” ISBN: 9780070569744, New York: McGraw-Hill Education.
[50]. Paul Childs, Allan C. L. Wong, N. Gowripalan and G. D. Peng (2007.02), “Measurement of the coefficient of thermal expansion of ultra-high strength cementitious composites using fibre optic sensors,” Cement and Concrete Research. Vol. 37, pp. 789-795.
[51]. Min Ook Kim and Amanda C. Bordelon (2017.02), “Age-dependent properties of fiber-reinforced concrete for thin concrete overlays,” Construction and Building Materials. Vol. 137, pp. 288-299.
[52]. H. Kada, M. Lachemi, N. Petrov, O. Bonneau and P. C. Aitcin (2002.02), “Determination of the coefficient of thermal expansion of high performance concrete from initial setting,” Materials and Structures/Materiaux et Constructions. Vol. 35, pp. 35-41.
[53]. Md Sarwar Siddiqui and David W. Fowler (2015.05), “A systematic optimization technique for the coefficient of thermal expansion of Portland cement concrete,” Construction and Building Materials. Vol. 88, pp. 204-211.
[54]. Guibo Gao, Chunxiang Qian and Yongwei Wang (2011.10), “Effect of Fly Ash and Slag Powder on Coefficient of Thermal Expansion of Concrete,” Advanced Materials Research. Vol. 374-377, pp. 1230-1234.
[55]. Ahmed Loukili, David Chopin, Abdelhafid Khelidj and Jean Yves Le Touzo (2000.02), “A new approach to determine autogenous shrinkage of mortar at an early age considering temperature history,” Cement and Concrete Research. Vol. 30, pp. 915-922.
[56]. Tayfun Uygunog˘lu and Ilker Bekir Topçu (2009.05), “Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature,” Construction and Building Materials. Vol. 23, pp. 3063-3069.
[57]. Masahiro Ouchi (1998),「Mix-Design and Testing Methods for Self-Compacting Concrete」,混凝土施工自動化論文集,第9-16頁。
[58]. 牧保峰 (1998),「化學摻料在高性能混凝土之應用 – 日本經驗」,混凝土施工自動化論文集,第97-123頁。
[59]. Nadine Hani, Omar Nawawy, Khaled S. Ragab and Mohamed Kohail (2008.01), “The effect of different water/binder ratio and nano-silica dosage on the fresh and hardened properties of self-compacting concrete,” Construction and Building Materials. Vol. 165, pp. 504-513.
[60]. I. M. Nikbin, M. H. A. Beygi, M. T. Kazemi, J. Vaseghi Amiri, E. Rahmani, S. Rabbanifar and M. Eslami (2013.12), “Effect of coarse aggregate volume on fracture behavior of self compacting concrete,” Construction and Building Materials. Vol. 52, pp. 137-145.
[61]. Elias Molaei Raisi, Javad Vaseghi Amiri and Mohammad Reza Davoodi (2018.05), “Mechanical performance of self-compacting concrete incorporating rice husk ash,” Construction and Building Materials. Vol. 177, pp. 148-157.
[62]. Miguel C. S. Nepomuceno, L. A. Pereira-de-Oliveira, S. M. R. Lopes and R. M. C. Franco (2016.03), “Maximum coarse aggregate’s volume fraction in self-compacting concrete for different flow restrictions,” Construction and Building Materials. Vol. 113, pp. 851-856.
[63]. W. S. Alyhya, M. S. Abo Dhaheer, M. M. Al-Rubaye and B. L. Karihaloo (2016.02), “Influence of mix composition and strength on the fracture properties of self-compacting concrete,” Construction and Building Materials. Vol. 110, pp. 312-322.
[64]. Erhan Güneyisi, Mehmet Gesog˘lu and Erdog˘an Özbay (2010.04), “Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures,” Construction and Building Materials. Vol. 24, pp. 1878-1887.
[65]. Salah Altoubat, M. Talha Junaid, Moussa Leblouba and Deena Badran (2017.01), “Effectiveness of fly ash on the restrained shrinkage cracking resistance of self-compacting concrete,” Cement and Concrete Composites. Vol. 79, pp. 9-20.
[66]. Stefanus A. Kristiawan and Agung P. Nugroho (2017), “Creep behavior of self-compacting concrete incorporating high volume fly ash and its effect on the long term deflection of reinforced concrete beam,” Procedia Engineering. Vol. 171, pp. 715-724.
[67]. V. Kannan (2017.11), “Strength and durability performance of self compacting concrete containing self-combusted rice husk ash and metakaolin,” Construction and Building Materials. Vol. 160, pp. 169-179.
[68]. G. Heirman, L. Vandewalle, D. Van Gemert, V. Boel, K. Audenaert, G. De Schutter, B. Desmet and J. Vantomme (2008.05), “Time-dependent deformations of limestone powder type self-compacting concrete,” Engineering Structures. Vol. 30, pp. 2945-2956.
[69]. Wen Zhu, Jiangxiong Wei, Fangxian Li, Tongsheng Zhang, Yang Chen, Jie Hu and Qijun Yu (2016.04), “Understanding restraint effect of coarse aggregate on the drying shrinkage of self-compacting concrete,” Construction and Building Materials. Vol. 114, pp. 458-463.
[70]. Mohammad Soleymani Ashtiani, Allan N. Scott and Rajesh P. Dhakal (2013.07), “Mechanical and fresh properties of high-strength self-compacting concrete containing class C fly ash,” Construction and Building Materials. Vol. 47, pp. 1217-1224.
論文全文使用權限:不同意授權