現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以玻璃纖維為原料燒製輕質粒料之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Using Glass Fiber as a Raw Material for Product Lightweight Aggregate [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:黃建龍
英文姓名:Chien-Lung Huang
研究生學號:105428036
學位類別:碩士
語文別:中文
口試日期:2018/07/30
論文頁數:164
指導教授中文名:黃中和
指導教授英文名:Chung-Ho Huang
口試委員中文名:顏聰;黃中和;蘇南;李有豐
中文關鍵詞:玻璃纖維火山泥大理石材廢泥輕質粒料燒結技術
英文關鍵詞:Glass FiberVolcanic MudStone SludgeLightweight AggregateSintering
論文中文摘要:隨著玻璃纖維廣泛應用,廢棄玻璃纖維量也將逐漸增加,如何再利用將成為重要研究課題。為此,本文考慮使用玻璃纖維原料,以高溫燒結法再製為輕質粒料,以期開創廢棄玻璃纖維之再利用方向。研究規劃上,首先以不同尺寸玻璃纖維粉末作為原料,進行輕質粒料的試燒;其次,以玻璃纖維粉末分別混合不同比例(0%、20%、50%、80%、100%)火山泥或大理石材廢泥混合後進行試燒。本研究採預熱與培燒兩段式燒結,其中預熱溫度與時間固定,變化五個不同焙燒溫度(1000、1100、1150、1200、1250℃)與四種不同培燒時間(2.5、5、7.5、10分鐘)作為變數。其後進行顆粒密度、吸水率、筒壓強度與微觀結構等測試,藉以評估純玻璃纖維,或其混合火山泥、大理石材廢泥作為原料,燒製輕質粒料之可行性。
試驗結果顯示,玻璃纖維長度小於0.55 mm時可成功造粒,而長度大於4 mm時較難造粒,不適合作為造粒型輕質粒料之原料。玻璃纖維於不同培燒製條件下,均可成功燒製為輕質粒料,其顆粒密度介於1430~1928 kg/m3,吸水率為2.6~6.7 %,筒壓強度為16~24 MPa;其質輕效果較差,適合於結構用輕質混凝土。當玻璃纖維混合不同比例火山泥(以氧化矽)為原料時,可製成輕質粒料,測得顆粒密度變化於500~1865 kg/m3,吸水率為2.2~8.7 %,筒壓強度為0.6~11.6 MPa。當火山泥取代率固定為20%時,焙燒溫度由1000 ℃提高至1250 ℃,粒料顆粒密度由1826 kg/m3降至670 kg/m3;焙燒時間2.5分延長至10分時,粒料顆粒密度從1523 kg/m3降至705 kg/m3。增加培燒溫度與時間均會降低粒料顆粒密度。玻璃纖維混合以氧化鈣為主成分之大理石材廢泥,廢泥取代率越高粒料膨脹效果越佳,可得最低380 kg/m3顆粒密度,粒料吸水率亦高達60%,筒壓強度低於1.0 MPa。當取代率高於80%時,無法成功燒製出輕質粒料。掃描式電子顯微鏡觀察可知,輕質粒料內部生成有連通孔隙時,會增加粒料吸水率。粒料表殼玻璃質越厚,則可降低吸水率與提升筒壓強度。
論文英文摘要:As the production use of glass fiber products increases, the amount of waste glass fiber will also gradually increase. Therefore, the reuse of waste glass fiber is a subject worthy for study. As a result, this research considers the glass fiber to be made into lightweight aggregates after using the high-temperature sintering method, and hopes to create a recycling direction of the glass fiber. In this research, different sizes of the glass fiber powder is used as the raw material and then conducted a set of experiment jobs for sintering lightweight aggregates Second, the glass fiber powder is mixed with different proportions (0%, 20%, 50%, 80%, 100%) of volcanic mud and waste marble sludge and subjected to sintering. This study includes two-stage of sintering, preheating and sintering. The sintering conditions include five different sintering temperatures (1000, 1100, 1150, 1200, 1250 °C) and four different sintering times (2.5, 5, 7.5, 10 minutes) as variables. Thereafter, the pellet obtained by sintering is subjected to tests such as particle density, water absorption, compress strength and microstructure to evaluate the feasibility of using glass fiber, volcanic mud and marble waste as lightweight aggregates for sintering.
From the test results, the granulation can be successfully performed when the glass fiber length is less than 0.55 mm. When the length is more than 4 mm, it is difficult to granulate, and it is not suitable as a raw material for granulating lightweight aggregates. The glass fiber can be successfully sintered into lightweight aggregates under different sintering conditions, and its particle density is between 1430 and 1928 kg/m3, the water absorption rate is 2.6-6.7 %, and the compress strength is 16~24 MPa. Its light weight effect is poor, is suitable for structural concrete. When the glass fiber is mixed with different proportions of volcanic mud (monoxide), it can be made into lightweight aggregates. The measured particle density varies from 500 to 1865 kg/m3, the water absorption rate is from 2.2 to 8.7%, and the compress strength is from 0.6 to 11.6 MPa. When the volcanic mud substitution rate is 20% and the sintering temperature is increased from 1000 °C to 1250 °C, the pellet density can be reduced from 1826 kg/m3 to 670 kg/m3. When the sintering time was extended from 2.5 minutes to 10 minutes, the pellet density decreased from 1523 kg/m3 to 705 kg/m3. Increasing the sintering temperature and time will reduce the pellet density. When the glass fiber is mixed with the waste marble mud with calcium oxide as the main component, the higher the replacement rate of the waste marble mud, the better the expansion effect of the pellet, at this time, the lowest particle density is 380 kg/m3, and the water absorption rate of the pellet is as high as 60% and the compress pressure is less than 1.0 MPa. When the substitution rate is higher than 80%, the lightweight pellets cannot be successfully sintered. It can be seen from the scanning electron microscope that when the connected pores are formed inside the light particle material, the water absorption rate of the pellets is increased. When the glass of the pellet case is thicker, the water absorption rate and the compress strength can be lowered.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 vi
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究方法與流程 3
第二章 文獻回顧 5
2.1 玻璃纖維材料 5
2.1.1 玻璃纖維之發展 5
2.1.2 玻璃纖維製程 6
2.1.3 玻璃纖維種類與特性 8
2.1.4 玻璃纖維應用 11
2.1.5 玻璃纖維應用於工程混凝土 12
2.1.6 玻璃纖維回收再利用技術 14
2.2 輕質粒料 17
2.2.1 輕質粒料定義 17
2.2.2 輕質粒料特性 18
2.2.3 輕質粒料混凝土工程性質 20
2.3 輕質粒料燒製技術 21
2.3.1 輕質粒料造粒方法 22
2.3.2 輕質粒料燒製機理 23
2.3.3 輕質粒料燒製條件 25
2.4 泥狀材料燒製輕質粒料之研究 28
2.4.1 天然材料 28
2.4.2 工業廢棄物材料 30
2.4.3 其他材料 32
第三章 試驗規劃 54
3.1 試驗材料 54
3.1.1 玻璃纖維原料 54
3.1.2 火山泥 54
3.1.3 石材廢泥 55
3.2 試驗設備 55
3.2.1 材料試驗設備 55
3.2.2 粒料燒製設備 56
3.2.3 粒料強度試驗設備 57
3.2.4 粒料微觀結構觀察設備 57
3.3 雛粒製作及燒結方法 58
3.3.1 材料預處理 58
3.3.2 雛粒製作 58
3.3.3 粒料燒製 59
3.4 粒料工程性質試驗方法 59
3.4.1 原料基本性質試驗方法 59
3.4.2 顆粒密度試驗方法 62
3.4.3 吸水率試驗方法 63
3.3.4 筒壓強度試驗方法 63
3.5 試驗變數設定 64
3.5.1 原料混合參數設定 64
3.5.2 燒結條件參數設定 65
3.5.3 試驗組別說明 65
第四章 試驗結果分析與討論 79
4.1 原料基本性質分析 79
4.1.1 物理性質分析 79
4.1.2 化學性質分析 80
4.1.3 原料造粒分析 81
4.2 玻璃纖維燒製輕質粒料之可行性探討 83
4.2.1 原料尺寸對燒製玻璃纖維輕質粒料之影響 83
4.2.2 焙燒溫度對燒製玻璃纖維輕質粒料之影響 84
4.2.3 焙燒時間對燒製玻璃纖維輕質粒料之影響 85
4.3 玻璃纖維混合火山泥輕質粒料之燒製技術 86
4.3.1 火山泥取代率對玻璃纖維輕質粒料之影響 86
4.3.2 焙燒溫度對火山混合泥輕質粒料之影響 91
4.3.3 焙燒時間對火山混合泥輕質粒料之影響 94
4.4 玻璃纖維混合石材廢泥燒製輕質粒料之技術 95
4.4.1 石材廢泥取代率對玻璃纖維輕質粒料之影響 96
4.4.2 焙燒溫度對石材混合泥輕質粒料之影響 97
4.4.3 焙燒時間對石材混合泥輕質粒料之影響 99
第五章 結論與建議 153
5.1 結論 153
5.1.1 玻璃纖維燒結技術之探討 153
5.1.2 火山泥取代率之探討 153
5.1.3 石材廢泥取代率之探討 154
5.2 建議 154
參考文獻 155
論文參考文獻:[1]. 經濟部統計處 (2017.06),「工業產銷存動態調查產品統計」,經濟部工業生產統計年報,第74頁。
[2]. 陳建宏 (2002.07),「玻纖粉應用於混凝土中可行性之研究」,碩士學位論文,台北市:國立台灣海洋大學材料工程研究所。(指導教授:鍾文貴,柯亭帆)
[3]. 行政院環境保護署 (20.04),「通過環境影響評估審查之開發行為統計」,行政院環境保護署廢棄物管理統計年報,第23~30頁。
[4]. 花蓮縣環保局 (1997.04),「花蓮縣事業廢棄物之處存、清除、處理之方法及最終處置」,花蓮縣環保局研究報告,第25頁。
[5]. 顧宜 (2003.12),「複合材料」,初版,ISBN:9575126904,台北市:新文京開發出版股份有限公司。
[6]. 馬振基 (1995.10),「高分子複合材料」,初版,ISBN:9570910240,台北市:國立編譯館。
[7]. 楊明山,李林凱 (2006.05),「塑料改性工藝、配方與應用」,初版,ISBN:9787122166081,北京市:化學工業出版社。
[8]. 金重勳 (1996.04),「工程材料」,初版,ISBN:9789575360962,台南市:復文興業股份有限公司。
[9]. 田中俊克 (1995.07),「玻璃纖維組成物、玻璃纖維以及含玻璃纖維複合材料」,中華人民共和國發明專利CN101198559A。
[10]. 吳俊諺 (2016.07),「無電電鍍銀至矽烷偶合劑改質之回收玻璃纖維填入矽橡膠之導電度研究」,碩士學位論文,雲林縣:國立雲林科技大學防災與環境資源工程研究所。(指導教授:張銘坤)
[11]. 王珍妮 (2014.07),「玻璃纖維基材塗佈聚四氟乙烯耐候性及其物理性質之評估」,碩士學位論文,台北市:國立台北科技大學有機高分子研究所。(指導教授:芮祥鵬)
[12]. 林宇茂 (2006.07),「玻璃纖維產業競爭策略分析--以大強森為例」,碩士學位論文,新竹市:國立交通大學管理學院高階主管管理碩士學程。(指導教授:王文杰)
[13]. 張曉明,劉雄亞 (2007.01),「增強熱塑性複合材料及其應用」,初版,ISBN:9787502592165,北京市:化學工業出版社。
[14]. 畢鴻章 (2003.08),「高硅氧玻璃纖維及其應用」,高科技纖維與應用期刊,第28卷,第四期,第38~39頁。
[15]. 吳文演 (1999.08),「高科技紡織品之研發企畫與產品設計」,初版,ISBN:9579739412,台北市:台灣區絲織工業同業公會。
[16]. 吳人潔,段維新,翁慶隆,郭永盛 (2005.08),「複合材料」,初版,ISBN:9861500375,台北市:新文京開發出版有限公司。
[17]. John E. Findling and Kimberly D. Pelle (2008.07), “Encyclopedia of Worlds Fairs and Expositions,” 2nd Edition, ISBN: 0786434163, North Carolina: McFarland
[18]. 趙升峰,黃廣龍,章新,趙小飛,馬世強 (2016.11),「玻璃纖維(GFRP)筋替代鋼筋在基坑支護樁中的應用」,安徽建築大學學報,第24卷,第四期,第55~59頁。
[19]. 黃君豪 (2006.07),「歷史建築磚牆玻璃纖維補強研究」,碩士學位論文,台南市:國立成功大學建築研究所。(指導教授:陳純森,張嘉祥)
[20]. Morteza Khorami, Eshmaeil Ganjian, Azamalsadat Mortazavi, Messaoud Saidani, Adegoke Olubanwo and Alfred Gand (2017.05), “Utilisation of waste cardboard and Nano silica fume in the production of fibre cement board reinforced by glass fibres,” Construction and Building Materials. Vol. 152, pp. 746-755.
[21]. A. A. Pazeto, P. M. Amaral, J. R. Pinheiro and A.B. Paraguassú (2017.11), “Effects of glass fiber-reinforcement on the mechanical properties of coarse grained building stone,” Construction and Building Materials. Vol. 155, pp. 79-87.
[22]. F. Morea and R. Zerbino (2018.03), “Improvement of asphalt mixture performance with glass macro-fibers,” Construction and Building Materials. Vol. 164, pp. 113-120.
[23]. Maryam Khooshechin and Javad Tanzadeh (2018.03), “Experimental and mechanical performance of shotcrete made with nanomaterials and fiber reinforcement,” Construction and Building Materials. Vol. 165, pp. 199-205.
[24]. Arife Yurdakul, Emrah Dolekcekic, Goktug Gunkaya, Taner Kavas and Bekir Karasu (2018.05), “The usage of newly developed glass fibre in cement structure and their characterization,” Construction and Building Materials. Vol. 170, pp. 13-19.
[25]. 徐文雄 (1997.12),「電子產業用玻璃纖維廢絲資源化再生技術研究開發」,強化塑膠,第24卷,第110~112頁。
[26]. M.I. Martín, F. A. López, F. J., Alguacil and M. Romero (2014.04), “Development of crystalline phases in sintered glass-ceramics from residual E-glass fibres,” Ceramics International. Vol. 40, pp. 2769-2776.
[27]. 陳偉任 (2016.01),「熱固性複合材料廢棄物回收處理及再生產品之研究」,尖端材料科技協會季刊,第四十二期,第20~23頁。
[28]. 陳柏華 (2016.07),「表面改質玻璃纖維粉於混凝土補強之應用」,碩士學位論文,台北市:國立台北科技大學資源工程研究所。(指導教授:陳志恆)
[29]. Alireza Dehghan, Karl Peterson and Asia Shvarzman (2017.08), “Recycled glass fiber reinforced polymer additions to Portland cement concrete,” Construction and Building Materials. Vol. 146, pp. 238-250.
[30]. 蕭柏仰 (2006.07),「水庫淤泥輕質骨材之膨脹氣體生成研析」,碩士學位論文,台中市:國立中興大學土木工程研究所。(指導教授:陳豪吉)
[31]. CNS 3691 (1974 08),「結構混凝土用之輕質粒料」,中華民國國家標準。
[32]. GB-2841-81 (1992.01),「天然輕骨料」,中華人民共和國國家標準。
[33]. ASTM C330 (1990.03), “Standard Specification for Lightweight Aggregates for Structural Concrete,” ASTM International, West Conshohocken, PA..
[34]. BS 3797 (1976.06), “Specification for Lightweight Aggregates for Masonry Units and Structural Concrete,” British Standards Institution, London.
[35]. UNE-EN-13055-1 (2004.10), “áridos ligeros. Parte 1, Áridos ligeros para hormigón, mortero e inyectado,” National Institute of Rationalization and Standardization, Spain.
[36]. C. R. Cheeseman and G. S. Virdi (2005.09), “Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash,” Resources, Conservation and Recycling. Vol. 45, pp. 18-30.
[37]. 林維明,吳介源 (1999.04),「當前輕質骨材混凝土應用的重要性」,土木技術,第20期,第78~87頁。
[38]. H. J. Chen, T. Yen, T. P. Lia and Y. L. Huang (1999.02), “Determination of the Dividing Strength and its Relation to the Concrete Strength in Lightweight Aggregrate,” Cement and Concrete Composites. Vol. 21, pp. 29-37.
[39]. 顏聰 (2017.08),「土木材料」,第五版,ISBN:957-41-3397-4,台中市:自行發行。
[40]. Markus Bernhardt, Harald Justnes, Hilde Tellesbø and Kjell Wiik (2014.10), “The effect of additives on the properties of lightweight aggregates produced from clay,” Cement & Concrete Composites, Vol. 53, pp. 233-238.
[41]. Ioanna Kourti and Christopher R. Cheeseman (2010.09), “Properties and microstructure of lightweight aggregate produced from lignite coal fly ash and recycled glass,” Resources, Conservation and Recycling. Vol. 53, pp. 233-238.
[42]. Ming wei Liu, Xiao Liu, Wei zhuo Wang, Jing-Bo Guo, Lanhe Zhang and Hai feng Zhang (2018.05), “Effect of SiO2 and Al2O3 on characteristics of lightweight aggregate made from sewage sludge and river sediment,” Cermics International. Vol. 44, pp. 4313-4319.
[43]. Jose Manuel Moreno Maroto, Beatriz Gonzalez Corrochano, Jacinto Alonso Azcarate, Luis Rodríguez and Anselmo Acosta (2017.10), “Manufacturing of lightweight aggregates with carbon fiber and mineral wastes,” Cement and Concrete Composites, Vol. 83, pp. 335-348.
[44]. 陳玉萍,陳豪吉,「以污水處理廠污泥與水庫淤泥混配燒製輕質骨材之研究」,第十屆(2010.11)全國輕骨料及輕骨料混凝土學術討論會暨第四屆海峽兩岸輕骨料混凝土產製與應用技術研討會,第一卷,第69~81頁,北京市,中華人民共和國,2010.11.25-26。
[45]. 王順元 (2009.07),「廢棄物資源化再製輕質骨材之應用研究」,博士學位論文,台中市:國立中興大學土木工程研究所。(指導教授:陳豪吉)
[46]. 陳豪吉 (1998.07),「以台灣地區生產之輕質骨材探討輕質混凝土之配比製作及強度性質」,博士學位論文,台中市:國立中興大學土木工程研究所。(指導教授:顏聰)
[47]. 顏聰,陳豪吉 (2005.09),「輕質骨材混凝土」,中華輕質骨材協會會刊,第50~70頁。
[48]. 顏聰 (2003.12),「輕質骨材混凝土之力學性質」,高性能混凝土於結構工程之應用研討會,台中市,台灣,2003.12.11。
[49]. 龔洛書,柳春圃 (1996.04),「輕集料混凝土」,初版,ISBN:7113023398,北京市:中國鐵道出版社。
[50]. Riley C. M. (1951.04), “Relation of chemical properties to the bloating of clays,” ACI Journal. Vol. 34, No. 4, pp. 121-128.
[51]. Kolesnikov E. A. (1974.03), “Bloating of fusible clays,” Glass and Ceramics. Vol. 31, No. 5, pp. 354-356.
[52]. J. Decleer and W. Viaene (1993.08), “Rupelian boom clay as raw material for expanded clay manufacturing,” Apply Clay Science. Vol. 8, No. 2-3, pp. 111-128.
[53]. 吳國豪 (2015.08),「模擬商業用旋窯欲燒和燒結的停留時間和溫度對人造輕質骨料的性能影響」,科技部專題研究報告,MOST 104-2221-E-237-004。
[54]. 呂建興 (2016.07),「應用流體化床焚化爐底渣與飛灰製備輕質骨材之特性研究」,博士學位論文,台中市:國立中興大學土木工程研究所(指導教授:魏銘彥)。
[55]. 程道腴 (1970.10),「耐火材料學」,初版,ISBN:9789579232968,台北市:財團法人徐氏基金會出版。
[56]. 王根元 (2004.11),「回轉窯生產人造輕質骨材的燒成技術」,第一屆海峽兩岸輕骨料混凝土產製與應用技術研討會論文集,第一卷,第122~126頁,南京市,中華人民共和國,2004.11.25-26。
[57]. 孫素真 (2016.10),「粉煤灰陶粒的生產及應用技術研究」,江西建材,第一期,第5~6頁。
[58]. M. Dondi, P. Cappelletti, M. D’Amore, R. de Gennaro , S. F. Graziano, A. Langella, M. Raimondo and C. Zanelli (2016.11), “Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating,” Construction and Building Materials. Vol. 127, No. 30, pp. 394-409.
[59]. 蔡振球 (2005.07),「都市下水污泥灰燒結輕質化特性之研究」,博士學位論文,桃園市:國立中央大學環境工程研究所。(指導教授:王鯤生)
[60]. Yuan Feng Qi, Qin Yan Yue, Shu Xin Han, Min Yue, Baoyu Gao, Hui Yu and Tian Shao (2010.04), “Preparation and mechanism of ultra-lightweight ceramics produced from sewage sludge,” Journal of Hazardous Materials. Vol. 176, No. 1-3, pp. 76-84.
[61]. Beatriz DeGennaro, Jacinto Alonso-Azcárate and Magdalena Rodas (2014.02), “Effect of prefiring and firing dwell times on the properties of artificial lightweight aggregates,” Construction and Building Materials. Vol. 53, No. 28, pp. 91-101.
[62]. Chung-Ho Huang (2013.06), “Application of water treatment sludge in the manufacturing of lightweight aggregate,” Construction and Building Materials. Vol. 43, pp. 174-183.
[63]. Yu Ling Wei, Chang-Yuan Lin, Kuan Wei Ko and H. Paul Wang (2011.07), “Preparation of low water-sorption lightweight aggregates from harbor sediment added with waste glass,” Marine Pollution Bulletin. Vol. 63, No. 5-12, pp. 135-140.
[64]. Abdel Monem Mohamed Soltan, Wolf Achim Kahl, Fawzia Abd EL Raoof, Baher Abdel Hamid El Kaliouby, Mohamed Abdel Kader Serry and Noha Ali Abdel Kader (2016.03), “Lightweight aggregates from mixtures of granite wastes with clay,” Journal of Cleaner Production. Vol. 117, No. 20, pp. 139-149.
[65]. 張家碩 (2005.07),「水庫淤泥燒製輕質骨材的燒結行為之研究」,碩士學位論文,臺南市:國立成功大學資源工程研究所。(指導教授:黃紀嚴)
[66]. Bo Li, Tung Chai Ling, Lie Qu and Yuan Wang (2016.07), “Effects of a two-step heating process on the properties of lightweight aggregate prepared with sewage sludge and saline clay,” Construction and Building Materials. Vol. 114, No. 1, pp. 119-126.
[67]. Chien-Hsing Lu, Jyh-Cherng Chen, Kui-Hao Chuang and Ming-Yen Wey (2015.08), “The different properties of lightweight aggregates with the fly ashes of fluidized-bed and mechanical incinerators,” Construction and Building Materials. Vol. 101, pp. 380-388.
[68]. Jose Manuel Moreno Maroto, Beatriz Gonzalez Corrochano, Jacinto Alonso Azcarate, Luis Rodríguez and Anselmo Acosta (2017.09), “Development of lightweight aggregates from stone cutting sludge, plastic wastes and sepiolite rejections for agricultural and environmental purposes,” Journal of Environmental Management. Vol. 200, pp. 229-242.
[69]. 莊文星 (1999.06),「台灣之火山活動與火成岩」,初版,ISBN:9578503628,台北市:國立自然科學博物館。
[70]. S. Volland and J. Brötz (2015.06), “Lightweight aggregates produced from sand sludge and zeolitic rocks,” Construction and Building Materials. Vol. 85, No. 15, pp. 22-29.
[71]. 單名楊,李振卿 (2006.10),「資源化重金屬污泥作為綠營建透水步道磚」,2006年台灣環境資源永續發展研討會,第448~452頁,桃園市,台灣,2006.10.20。
[72]. I. J. Chiou and C. H. Chen (2013.01), “Effects of waste-glass fineness on sintering of reservoir-sediment aggregates,” Construction and Building Materials. Vol. 38, pp. 987-993.
[73]. 顏聰,陳豪吉,黃兆龍 (2005.09),「台灣水庫淤泥燒製輕質骨材可行性之探討」,中國土木水利工程期刊,第17卷,第3期,第413~424頁。
[74]. Beatriz González Corrochano, Jacinto Alonso-Azcárate, Luis Rodríguez, Agripino Pérez Lorenzo, María Fernández Torío, Juan José Tejado Ramos, María Dolores Corvinos and Carlos Muro (2016.07), “Valorization of washing aggregate sludge and sewage sludge for lightweight aggregates production,” Construction and Building Materials. Vol. 116, No. 30, pp. 252-262.
[75]. Yu-Ling Wei, Jing-Chiang Yang, Yong-Yang Lin, Shih-Yu Chuang and H. Paul Wang (2008.09), “Recycling of harbor sediment as lightweight aggregate,” Marine Pollution Bulletin. Vol. 57, No. 6-12, pp. 867-872.
[76]. Ming wei Liu, Guoren Xu and Guibai Li (2017.04), “Effect of the ratio of components on the characteristics of lightweight aggregate made fromsewage sludge and river sediment,” Process Safety and Environmental Protection. Vol. 105, pp. 109-116.
[77]. Fahad K. Alqahtani, Gurmel Ghataora, M. Iqbal Khan and Samir Dirar (2017.11), “Novel lightweight concrete containing manufactured plastic aggregate,” Construction and Building Materials. Vol. 148, No.1, pp. 386-397.
[78]. Kui-Hao Chuang, Chien-Hsing Lu, Jyh-Cherng Chen and Ming-Yen Wey (2018.08), “Reuse of bottom ash and fly ash from mechanical-bed and fluidized-bed municipal incinerators in manufacturing lightweight aggregates,” Ceramics International. Vol. 44, No. 11, pp. 12691-12696.
[79]. 黃正義,謝錦松 (1995.09),「固體廢棄物處理」,修訂六版,ISBN:957531672X,台北市:淑馨出版社。
[80]. Min Cheol Han, Dong Yeop Han and Jae-Kyung Shin (2015.11), “ Use of bottom ash and stone dust to make lightweight aggregate,” Construction and Building Materials. Vol. 90, No.30, pp. 192-196.
[81]. 薛穎智 (2005.07),「以燃煤底灰燒製輕質骨材之可行性研究」,碩士學位論文,台中市:國立中興大學土木工程研究所。(指導教授:陳豪吉)
[82]. P. C. Lau, D. C. L. Teo and M.A. Mannan (2017.10), “Characteristics of lightweight aggregate produced from lime-treated sewage sludge and palm oil fuel ash,” Construction and Building Materials. Vol. 152, No.15, pp. 192-196.
[83]. B. González Corrochano, J. Alonso Azcárate, M. Rodas, J. F. Barreneche and F. J. Luque (2011.08), “Microstructure and mineralogy of lightweight aggregates manufactured from mining and industrial wastes,” Construction and Building Materials. Vol. 25, No.8, pp. 3591-3602.
[84]. 李明美,陳炯立,王義基 (2005.07),「石材加工業廢棄物處理與再利用現況」,資源化產業資訊,第二十六卷,第38~45頁。
[85]. 黃志強 (1985.03),「石材污泥再利用於水泥產業之可行性研究」,碩士學位論文,花蓮縣:國立東華大學。(指導教授:王鴻濬)
[86]. P. Chindaprasirt, C. Jaturapitakkul and U. Rattanasak (2009.01), “Influence of fineness of rice husk ash and additives on the properties of lightweight aggregate,” Fuel. Vol. 88, No.1, pp. 158-162.
[87]. 黃士函 (2015.07),「稻殼燒製成輕質骨材之工程性質研究」,碩士學位論文,高雄市:正修科技大學營建工程研究所。(指導教授:王金鐘)
[88]. 蔡志清 (1996.07),「稻殼灰多孔陶瓷骨材之製備及其於染整廢水處理之應用」,碩士學位論文,新竹市:國立清華大學化學工程研究所。(指導教授:周更生)
[89]. 水產種苗編輯組 (2008.06),「漁業廢棄物點「殼」成金-牡蠣殼應用新商機」,水產種苗專刊,第127期,第25頁。
[90]. Yu-Ling Wei, Po-Jan Kuo, Yan-Zhi Yin, Yao-Ting Huang, Tai-Heng Chung and Xiang-Qi Xie (2018.05), “Co-sintering oyster shell with hazardous steel fly ash and harbor sediment into construction materials” , Construction and Building Materials. Vol. 172, No.30, pp. 224-232.
[91]. 龔建隆 (1996.07),「蚵殼骨材混凝土之工程性質研究」,碩士學位論文,高雄市:正修科技大學營建工程研究所。(指導教授:趙鳴,王金鐘)
[92]. E. Gippini (1969.04), “Contribution al’etude des proprietes de molage des argiles et desm elanges optimaux de matieres premieres,” L’Industrie Ceramique. Vol. 619, pp. 423-435.
[93]. 沈茂松 (2009.11),「實用土壤力學試驗」,增訂九版,ISBN:9789866727566,台北市:文笙書局。
[94]. 顏廷有 (2014.07),「石材污泥燒製輕質骨材之研究」,碩士學位論文,台中市:國立中興大學土木工程研究所。(指導教授:陳豪吉)
論文全文使用權限:不同意授權