現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:矽灰複合水膠對水泥砂漿工程性質之影響 [以論文名稱查詢館藏系統]
論文英文名稱:The Effect of Silica Fume Composite Hydrogel on Engineering Properties of Cement Mortar [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:鍾宜真
英文姓名:Yi-Jen Chung
研究生學號:105428094
學位類別:碩士
語文別:中文
口試日期:2018/07/30
論文頁數:144
指導教授中文名:黃中和
指導教授英文名:Chung-Ho Huang
口試委員中文名:顏聰;許貫中;陳建易;黃中和
口試委員英文名:Chung-Ho Huang
中文關鍵詞:矽灰水膠茶袋試驗水泥砂漿孔隙溶液
英文關鍵詞:Silica FumeHydrogelTeabag TestPore SolutionCement Mortar
論文中文摘要:高吸水性聚合物(水膠)作為混凝土養護劑已有許多研究成果,有文獻開發出飛灰複合水膠,可改善水膠釋水後混凝土內留下孔隙之缺陷。矽灰粒徑較飛灰為細,更具填充孔隙與卜作嵐反應效果。因此,本文旨在研發新型矽灰複合水膠,評估其對水泥砂漿的養護成效。研究規劃上,以水膠單體重量0 %~20 %的矽灰量,合成聚丙烯水膠過程置於水膠內部,針對合成水膠研磨不同粒徑顆粒,探討不同溶液(自來水、去離子水、0.3~0.6水泥漿抽取式孔隙溶液、0.3化學調配式孔隙溶液)中之吸水及釋水行為。之後,取水泥重量比0%~0.4 %的水膠,添加於不同水灰比(0.3~0.6)水泥砂漿,進行新拌性質、力學性質、體積穩定性,及微觀結構等測試。同時進行控制組試驗,以評估矽灰複合水膠對水泥砂漿工程性質之影響。
試驗結果顯示,矽灰複合水膠於自來水中吸水率變化於33~174 g/g之間,其中10 %矽灰含量水膠有最高吸水率,但均較聚丙烯水膠為低;小粒徑水膠則有較高之吸水率。在水泥漿抽取式孔隙溶液中,水灰比0.6降低至0.3,溶液中離子數增加,水膠吸水率降低約20%。化學調配式孔隙溶液與抽取式溶液水膠吸水率結果相似。水膠釋水行為受環境相對濕度影響較大,水膠顆粒大小與矽灰含量則影響較小。水膠添加於水泥砂漿量越多,需增加水量或強塑劑方可維持砂漿工作性,且會增長砂漿的凝結時間。矽灰複合水膠添加率由0~0.4 %時,28天水泥砂漿抗壓強度變化於408~490 kgf/cm2,以0.2 %者為最高。在28天乾燥收縮試體量測值變化於67~109 μm/m,隨著水膠添加率越高收縮量越小。當新型水膠之矽灰含量由0 %提高至20 %時,高水灰比(0.5、0.6)水泥砂漿,28天齡期砂漿抗壓強度平均增加15 %,在低水灰比(0.3、0.4)組別增加約20 %,顯示新型水膠用於低水灰比水泥砂漿較有利。由掃描式電子顯微鏡觀察出,水膠中矽灰與水泥漿體產生卜作嵐反應,可填補水膠釋水產生的孔隙。
論文英文摘要:Superabsorbent polymers (hydrogel) have been studied as a concrete curing agent. Previous literatures have developed the fly ash composite hydrogel for concrete, which is used to improve the defects of pores after hydrogel release water. Silica fume has a finer particle size than fly ash and is more obvious in pores-filling and pozzolanic reaction. Therefore, this paper mainly uses silica fume to synthesize in the hydrogel, and develops a new silica fume composite hydrogel, then discusses its water absorption behavior and curing effect. In terms of research planning, silica fume composite hydrogel was synthesized from 0 to 20 % by weight of hydrocolloid monomer, and different particle size particles were ground for composite hydrogel to investigate water absorption and water release behavior in different solutions (tap water, deionized water, 0.3~0.6 cement mortar extraction pore solution, 0.3 chemically formulation pore solution). After that, the cement with 0 %~0.4 % of cement weight was mixed into cement mortar with different water-cement ratio (0.3~0.6) to test its workability, mechanical properties, volume stability and microstructure. At the same time, a control group test was conducted to evaluate to assess the effect of silica fume composite hydrogel on the engineering properties of cement mortar.
The test results that the water absorption varies of silica fume composite hydrogel from 33 g/g to 174 g/g in the tap water. Among them, 10 % silica fume content hydrogel has a larger water absorption rate, but both are lower than polypropylene hydrogel. Comparing the water absorption behavior of different particle size hydrogels, it can be seen that the water absorption rate of small size hydrogel is slightly higher than that of large size. In the cement mortar extraction pore solution, when the water–cement ratio is lowered from 0.6 to 0.3, the number of ions in pore solution increases, and the hydrogel water absorption rate decreases by about 20 %. There are similar hydrogel water absorption results in both chemically formulated pore solution and the extraction solution. Water desorption behavior is greatly affected by the relative humidity of the environment, less related to the size of the hydrogel and the content of silica fume. More hydrogel is added to the cement mortar, more water or superplasticizer is needed to maintain the workability and increase the setting time. When the addition rate of silica fume composite hydrogel is from 0 to 0.4 %, the compressive strength of cement mortar at 28 days is from 408 to 490 kgf/cm2, with 0.2 % being the highest. The measured value of the drying shrinkage at 28 days was changed from 67 to 109 μm/m, and the shrinkage amount was smaller as the hydrogel addition rate was higher. When the silica fume in hydrogels is increased from 0 to 20%, for the high water-cement ratio groups (0.5, 0.6) mortar, the compressive strength of mortar at 28 day ages increases by an average of 15 %, while at low water-cement ratio groups (0.3、0.4) increased by about 20 %. This shows that the new hydrogel is more advantageous for low water-cement ratio mortar. Finally, a scanning electron microscope (SEM) was used to observe that a pozzolanic reaction occurs between the cement paste and silica fume in the hydrogel; this can be used to fill the pores caused by the water desorption of the hydrogel.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究方法與流程 2
第二章 文獻回顧 5
2.1 混凝土養護 5
2.1.1 混凝土養護作業與目的 5
2.1.2 混凝土養護技術 6
2.1.3 混凝土養護條件與評估方法 8
2.2 水膠簡介 11
2.2.1 水膠合成技術 11
2.2.2 水膠吸水機理 13
2.2.3 水膠種類與應用 15
2.3 水膠應用於混凝土研究成果 19
2.3.1 水膠作為混凝土內養護劑研究成果 19
2.3.2 特殊水膠用於混凝土研究成果 20
2.3.3 水膠混凝土的工程性質 21
2.4 矽灰應用於混凝土研究成果 23
2.4.1 矽灰材料特性 24
2.4.2 矽灰混凝土微觀結構 26
2.4.3 矽灰混凝土工程性質 27
第三章 試驗規劃 47
3.1 試驗材料與設備 47
3.1.1 水膠合成原料 47
3.1.2 水泥砂漿材料 48
3.1.3 水膠合成與試驗設備 48
3.1.4 水泥砂漿試驗設備 49
3.2 水膠材料與試驗方法 50
3.2.1 水膠合成程序 50
3.2.2 水膠吸水介質之調配 51
3.2.3 水膠吸水與釋水試驗 51
3.3 水泥砂漿材料試驗方法 53
3.3.1 水泥砂漿拌和程序 53
3.3.2 新拌性質試驗 53
3.3.3 力學性質試驗 54
3.3.4 乾燥收縮試驗 56
3.4 試驗變數設定與配比設計 56
3.4.1 試驗變數 56
3.4.2 試驗組別編碼說明 57
第四章 試驗結果分析 70
4.1 矽灰複合水膠之特性 70
4.1.1 不同介質對水膠吸水行為之影響 70
4.1.2 水膠粒徑分布對吸水行為之影響 72
4.1.3 濕度變化對水膠釋水行為之影響 73
4.2 添加矽灰複合水膠對水泥砂漿新拌性質之影響 74
4.2.1 不同種類之水膠水泥砂漿新拌性質 74
4.2.2 不同水灰比之水膠水泥砂漿新拌性質 76
4.2.3 不同水膠添加率之水泥砂漿新拌性質 77
4.3 矽灰複合水膠水泥砂漿之硬固性質 78
4.3.1 不同種類之水膠水泥砂漿硬固性質 78
4.3.2 不同水灰比之之水膠水泥砂漿硬固性質 80
4.3.3 不同水膠添加率之水泥砂漿硬固性質 82
4.4 矽灰複合水膠水泥砂漿之微觀結構分析 85
4.4.1 不同種類水膠水泥砂漿微觀結構分析 85
4.4.2 不同水灰比水膠水泥砂漿微觀結構分析 86
4.4.3 不同水膠添加率水泥砂漿微觀結構分析 86
第五章 結論與建議 132
5.1 結論 132
5.1.1 水膠吸水與釋水行為之探討 132
5.1.2 水膠對水泥砂漿新拌性質之影響 134
5.1.3 水膠對水泥砂漿硬固性質之影響 135
5.1.4 水膠水泥砂漿之微觀結構 136
5.2 建議 137
參考文獻 138
論文參考文獻:[1]. 中國土木水利工程協會 (2006.01),「混凝土施工規範與解說(土木402–94)」,初版,ISBN:957–655–409–8,台北市,科技圖書。
[2]. CNS 14891 (2005),「混凝土及混凝土用粒料詞彙」,中華民國國家標準。
[3]. 顏聰 (2017.08),「土木材料」,第五版,ISBN:957–41–3397–4,台中市:自行發行。
[4]. Jian-Hui Liu, Cai-Jun Shi, Xian-Wei Ma, Kamal H. Khayat, Jian Zhang, and De-Hui Wang (2017.08), “An over–view on the effect of internal curing on shrinkage of high performance cement-based materials,” Construction and Building Materials. Vol. 146, pp. 702-712.
[5]. ACI 308 (2001), “Guide to Curing Concrete,” American Concrete Institute, Farmington Hills, MI.
[6]. C. Angulski da Luz, R. D., and Hooton (2015.11), “Influence of curing temperature on the process of hydration of supersulfated cements at early age,” Cement and Concrete Research. Vol. 77, pp. 69-75.
[7]. Zeng-Qi Zhang, Bo Zhang, and Pei-Yu Yan (2016.09), “Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures,” Construction and Building Materials. Vol. 121, pp. 483-490.
[8]. Kübra Ekiz Barış, and Leyla Tanaçan (2017.05), “Earth of Datça: Development of pozzolanic activity with steam curing,” Construction and Building Materials. Vol. 139, pp. 212-220.
[9]. Kaffayatullah Khan, and Muhammad Nasir Amin (2017.11), “Influence of fineness of volcanic ash and its blends with quarry dust and slag on compressive strength of mortar under different curing temperatures,” Construction and Building Materials. Vol. 154, pp. 514-528.
[10]. M. Ibrahim, M. Shameem, M. Al–Mehthel, and M. Maslehuddin (2013.08), “Effect of curing methods on strength and durability of concrete under hot weather conditions,” Cement and Concrete Research. Vol. 41, pp. 60-69.
[11]. Bin Xue, Jian-Zhong Pei, Yan-Ping Sheng, and Rui Li (2015.12), “Effect of curing compounds on the properties and microstructure of cement concretes,” Construction and Building Materials. Vol. 101, pp. 410-416.
[12]. Ahmet Benli, Mehmet Karataş, and Yakup Bakir (2017.07), “An experimental study of different curing regimes on the mechanical properties and sorptivity of self–compacting mortars with fly ash and silica fume,” Construction and Building Materials. Vol. 144, pp. 552-562.
[13]. Zheng-Xiang Mi, Yu Hu, Qing-Bin Li, and Zai-Zhan An (2018.04), “Effect of curing humidity on the fracture properties of concrete,” Construction and Building Materials. Vol. 169, pp. 403-413.
[14]. 翟茂林,哈鴻飛 (2001.10),「水凝膠的合成、性質及應用」,大學化學,第16卷,第5期,第22~27頁。
[15]. 王愛勤,張俊平 (2006.09),「有機–無機複合高吸水性樹脂」,初版,ISBN:7–03–017732–0,北京市:科學出版社。
[16]. Muhammad Faheem Akhtar, Muhammad Hanif, and Nazar Muhammad Ranjha (2016.09), “Methods of synthesis of hydrogels A review,” Saudi Pharmaceutical Journal. Vol. 24, pp. 554-559.
[17]. Mostafa Mahinroosta, Zohreh Jomeh Farsangi, Ali Allahverdi, and Zahra Shakoori (2018.06), “Hydrogels as intelligent materials A brief review of synthesis, properties and applications,” Materials Today Chemistry. Vol. 8, pp. 42-55.
[18]. J. M. Bezemer, R. Radersma, D. W. Grijpma, P. J. Dijkstra, J. Feijen, and C. A. van Blitterswijk (2000.02), “Zero–order release of lysozyme from poly(ethylene glycol) / poly (butylene terephthalate) matrices,” Journal of Controlled Release. Vol. 64, pp. 179-192.
[19]. K. Akiyoshi, I. Taniguchi, H. Fukui, and J. Sunamoto (1996.01), “Hydrogel nanoparticle formed by self assembly of hydrophobized polysaccharide, Stabilization of Adriamycin by complexation,” European Journal of Pharmaceutics and Biopharmaceutics. Vol. 42, pp. 286-290.
[20]. Takashi Miyata, Noriko Asami, and Tadashi Uragami (1999.02), “Preparation of an antigen–sensitive hydrogel using antigen–antibody bindings,” Macromolecules. Vol. 32, pp. 2082-2084.
[21]. Yuan-Gang Zu, Ying Zhang, Xiu-Hua Zhao, Chang Shan, Shu-Chong Zu, Kunlun Wang, Yong Li, and Yun-Long Ge (2012.01), “Preparation and characterization of chitosan–polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin,” International Journal of Biological Macromolecules. Vol. 50, pp. 82-87.
[22]. Masaya Yamamoto, Yasuhiko Tabata, Liu Hong, Susumu Miyamoto, Nobuo Hashimoto, and Yoshito Ikada (2000.03), “Bone regeneration by transforming growth factor b1 released from a biodegradable hydrogel,” Journal of Controlled Release. Vol. 64, pp. 133-142.
[23]. N. Willmott, H. M. H. Kamel, J. Cummings, J. F. B. Stuart, and A. T. Florence (1984), “Adriamycin–loaded albumin microspheres: Lung entrapment and fate in the rat, in Microspheres and Drug Therapy,” Elsevier Science. New York, pp. 189-205.
[24]. S. R. Jameela, and A. Jayakrishnan (1995.07), “Glutaraldehyde crosslinked chitosan as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle,” Elsevier Biomaterials. Vol. 16, pp. 769-775.
[25]. H. Brondsted, L. Hovgaard, and L. Simonsen (1995.01), “Dextran hydrogels for colon–specific drug delivery. Comparative release study of hydrocortisone and prednisolone sodium phosphate,” STP Pharma Sci. Vol. 5, pp. 65-69.
[26]. R. Debajyoti, P. Sunny Gils, G. Mohanta, R. Manavalan, and P. Kumar Sahoo (2009.01), “Comparative delivery of diltiazem hydrochloride through synthesized polymer: hydrogel and hydrogel microspheres,” Journal of Applied Polymer Science. Vol. 116, pp.959-968.
[27]. A. J. Kuijpers, P. B. van Wachem, M. J. A. van Luyn, G. H. M. Engbers, J. Krijgsveld, S. A. J. Zaat, J. Dankert, and J. Feijen (2000.07), “In vivo and in vitro release of lysozyme from cross–linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves,” Journal of Controlled Release. Vol. 67, pp. 323-336.
[28]. Jalal Zohuriaan and Kourosh Kabiri (2008.06), “Superabsorbent Polymer Materials: A Review,” Iranian Polymer Journal. Vol. 17, pp. 451-477.
[29]. Ole Mejlhede Jensen and Per Freiesleben Hansen (2002.06), “Water–entrained cement–based materials: II. Implementation and experimental results,” Cement and Concrete Research. Vol. 32, pp. 973-978.
[30]. M. R. Geiker, D. P. Bentz, and O. M. Jensen (2004), “Mitigating Autogeneous Shrinkage by Internal Curing,” American Concrete Institute Special Publication, Vol. 218, pp. 143-148.
[31]. D. P. Bentz and O. M. Jensen (2004.08), “Mitigation strategies for autogenous shrinkage cracking,” Cement and Concrete Research. Vol. 26, pp. 677-685.
[32]. Ole Mejlhede Jensen and Per Freiesleben Hansen (2001.04), “Water-entrained cement-based materials: I. Principles and theoretical background,” Cement and Concrete Research. Vol. 31, pp. 647-654.
[33]. L. Dudziak and V. Mechtcherine (2009.11), “Reducing the cracking potential of ultra–high performance concrete by using super absorbent polymers (SAP),” Advances Concrete Materials. London, pp. 11-19.
[34]. J. Siramanont, W. Vichit-Vadakan, W. Siriwatwechakul (2010.08), “The impact of SAP structure on the effectiveness of internal curing,” RILEM Publications S.A.R.L. Denmark, pp. 243-52.
[35]. Konstantin Kovler (2012.08), “Effect of superabsorbent polymers on the mechanical properties of concrete,” 1st Edition, ISBN: 978–94–007–2732–8, New York:Springer, Dordrecht.
[36]. 林錦良 (2016.07),「兩性離子型水膠/爐石複合材料的合成和性質研究」,碩士學位論文,台北市:國立臺灣師範大學化學研究所。(指導教授:許貫中)
[37]. 藍漢中 (2015.07),「聚(丙烯酸/丙烯醯胺)/飛灰複合水膠的合成與性質研究」,碩士學位論文,台北市:國立臺灣師範大學化學研究所。(指導教授:許貫中)
[38]. Agnieszka J. Klemm and Karol S. Sikora (2013.12), “The effect of Superabsorbent Polymers (SAP) on microstructure and mechanical properties of fly ash cementitious mortars,” Construction and Building Materials. Vol. 49, pp. 134-143.
[39]. 周宜婷 (2010.07),「兩種半穿透型水膠之製備以及作為水泥砂漿自養護劑」,碩士學位論文,台北市:國立臺灣師範大學化學研究所。(指導教授:許貫中)
[40]. B. Craeye and G. De Schutter (2008.09), “Experimental evaluation of mitigation of autogenous shrinkage by means of a vertical dilatometer for concrete,” RILEM Publications S.A.R.L. Europe, pp. 909-914.
[41]. Shinichi Igarashi and Akio Watanabe (2006.01), “Experimental study on prevention of autogenous deformation by internal curing using super–absorbent polymer particles,” RILEM Publications S.A.R.L. Europe, pp. 77-86.
[42]. J. Piérard, V. Pollet, and N. Cauberg (2006.01), “Mitigating autogenous shrinkage in HPC by internal curing using superabsorbent polymers,” RILEM Publications S.A.R.L. Europe, pp. 97-106.
[43]. Viktor Mechtcherine, Lukasz Dudziak, and S. Hempel (2008.12), “Mitigating early age shrinkage of ultrahigh performance concrete by using super absorbent polymers (SAP),” Taylor & Francis Group. London, pp. 847-853.
[44]. Christof Schröfl, Viktor Mechtcherine, and Michaela Gorges (2012.06), “Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage,” Cement and Concrete Research. Vol. 42, pp. 865-873.
[45]. Hua-Jie Liu, Yu-Huan Bu, Jay G. Sanjayan, Ali Nazari, and Zhong-Hou Shen (2016.06), “Suitability of polyacrylamide superabsorbent polymers as the in ternal curing agent of well cement,” Construction and Building Materials. Vol. 112, pp. 253-260.
[46]. Fernando C. R. Almeida and Agnieszka J. Klemm (2018.04), “Efficiency of internal curing by superabsorbent polymers (SAP) in PC-GGBS mortars,” Cement and Concrete Research. Vol. 88, pp. 41-51.
[47]. Sung-Woo Oh and Young-Cheol Choi (2018.01), “Superabsorbent polymers as internal curing agents in alkali activated slag mortars,” Construction and Building Materials. Vol. 159, pp. 1-8.
[48]. ACI 116R (2009), “Cement and Concrete Terminology,” American Concrete Institute, Farmington Hills, MI.
[49]. Gözdeİnan Sezer (2012.01), “Compressive strength and sulfate resistance of limestone and/or silica fume mortars,” Construction and Building Materials. Vol. 26, pp. 613-618.
[50]. Eshmaiel Ganjian and Homayoon Sadeghi Pouya (2009.02), “The effect of Persian Gulf zone exposure on durability of mixes containing silica fume and blast–furnace slag,” Construction and Building Materials. Vol. 23, pp. 644-652.
[51]. Nader Ghafoori and Hamidou Diawara (2007.03), “Strength and wear resistance of sand replaced silica fume concrete,” Aci Materials Journal. Vol. 104, pp. 206-214.
[52]. M. S. Morsy, A. M. Rashad, and S. S. Shebl (2008), “Effect of elevated temperature on compressive strength of blended cement mortar,” Building Research Journal. Vol. 56, pp. 173-185.
[53]. Abdul Qudoos, Atta ur Rehman, Hong-Gi Kim, and Jae-Suk Ryou (2018.04), “Influence of the surface roughness of crushed natural aggregates on the microhardness of the interfacial transition zone of concrete with mineral admixtures and polymer latex,” Construction and Building Materials. Vol. 168, pp. 946-957.
[54]. Kuo-Yu Liao, Ping-Kun Chang, Yaw-Nan Peng, Chih-Chang Yang (2004.06), “A study on characteristics of interfacial transition zone in concrete,” Construction and Building Materials. Vol. 34, pp. 977-989.
[55]. Rafat Siddique (2011.09), “Utilization of silica fume in concrete: Review of hardened properties,” Resources, Conservation and Recycling. Vol. 55, pp. 923-932.
[56]. Sinan Caliskan (2003.05), “Aggregate/mortar interface: influence of silica fume at the micro– and macro–level,” Cement and Concrete Composites. Vol. 25, pp. 557-564.
[57]. K. L. Scrivener, A. K. Crumbie, and P. Laugesen (2004.12), “The interfacial transition zone (ITZ) between cement paste and aggregate in concrete,” Interface Science. Vol. 12, pp. 411-421.
[58]. Ping Duan, Zhong-He Shui, Wei Chen, and Chun-Hua Shen (2013.07), “Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete,” Construction and Building Materials. Vol. 44, pp. 1-6.
[59]. M. Mazloom, A. A. Ramezanianpour, and J. J. Brooks (2004.05), “Effect of silica fume on mechanical properties of high–strength concrete,” Cement and Concrete Composites. Vol. 26, pp. 347-357.
[60]. Fuat Köksal, Fatih Altun, İlhami Yiğit, Yuşa Şahin (2008.08), “Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes,” Construction and Building Materials. Vol. 22, pp. 1874-1880.
[61]. H. S. Wong and H. Abdul Razak (2005.04), “Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance,” Cement and Concrete Research. Vol. 35, pp. 696-702.
[62]. Ali Behnood and Hasan Ziari (2008.02), “Effects of silica fume addition and water to cement ratio on the properties of high–strength concrete after exposure to high temperatures,” Cement and Concrete Research. Vol. 30, pp. 106-112.
[63]. G. Appa Rao (2001.02), “Long–term drying shrinkage of mortar — influence of silica fume and size of fine aggregate,” Cement and Concrete Research. Vol. 31, pp. 171-175.
[64]. M. H. Zhang, C. Ttam, and M. P. Leow (2003.10), “Effect of water–to–cementitious materials ratio and silica fume on the autogenous shrinkage of concrete,” Cement and Concrete Research. Vol. 33, pp. 1687-1694.
論文全文使用權限:不同意授權