現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:濁水溪沖積扇淺層地下水氮素長期變化趨勢分析 [以論文名稱查詢館藏系統]
論文英文名稱:Analysis of long-term variation trend of Nitrogen in shallow aquifer, Choushui River alluvial fan [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:劉昱祥
英文姓名:Yu-Hsiang Liu
研究生學號:105428081
學位類別:碩士
語文別:中文
口試日期:2018/07/15
論文頁數:68
指導教授中文名:陳世楷
指導教授英文名:Shih-Kai Chen
口試委員中文名:朱子偉;張誠信;王聖瑋
中文關鍵詞:濁水溪沖積扇地下水氨氮硝酸鹽氮趨勢分析多元線性迴歸
英文關鍵詞:Choushui River alluvial FanGroundwaterAmmoniaNitrateTrend analysisMultiple Linear Regression Analysis
論文中文摘要:濁水溪沖積扇為台灣農業發展重鎮,其中包含複雜之農業土地利用及農業操作,伴隨著經濟與都市發展,工廠及都市化面積增加。由於彰雲地區地表水開發不易,供水需仰賴地下水,造成地下水經營管理更加困難。本研究針對濁水溪沖積扇淺層地下水進行氮素長期變化趨勢分析,根據環保署2006至2016年地下水監測資料,以各區地下水氮素長期變化趨勢為基礎,應用一般克利金進行氮素趨勢之空間變異推估,結合區域土地利用、農作物種類、輪作制度,加入多元線性迴歸綜合評估不同農作物對區域氮素汙染之影響程度,以釐清複雜之農業行為與地下水氮素汙染關係。研究結果顯示氨氮濃度呈現上升趨勢之區域,以彰化縣二林鎮較為顯著;硝酸鹽氮呈現上升趨勢之區域,以雲林縣虎尾鎮較為顯著。氨氮趨勢上升地區農業土地利用以稻作為主,硝酸鹽氮趨勢上升地區以稻作與旱作輪作區為主。兩區皆受到不同之土地利用、灌溉用水及農業操作之因素影響。藉由農作面積與年度氮素濃度資料進行多元迴歸分析探討空間及時間長期變化下,農業行為與地下水之間影響關係。分析結果顯示氨氮上升顯著地區,稻米為主要影響氨氮濃度增長之農作;硝酸鹽氮上升顯著地區,水旱田輪作為主要影響硝酸鹽氮增長之因素,由於氮素於不同農業行為之水土環境存在不同轉化作用,其中氨氮易存於厭氧環境,若處於好氧環境則因硝化作用轉化為硝酸鹽氮。研究結果顯示不同農業土地利用影響地下水質中氮素存在型態,透過本研究成果可做為機關單位擬定農業非點源汙染控制及相關地下水保護措施之參考。
論文英文摘要:Choushui River alluvial fan is an important agricultural area with complicated land uses and various agricultural patterns in Taiwan. Following the regional fast economic development, groundwater has been regarded as an alternative source of surface water in this area, which increased the difficulties in the management of groundwater resources. The aim of this study was to analysis spatial and temporal variation and interrelation for nitrogen concentrations in shallow aquifer of the study area. To clarify the relationships between complicated agriculture activities and nitrogen pollution on groundwater, the long-term linear trends of Ammonia-N and nitrate-N for 39 observation wells were calculated, and spatial estimation was made by using the Ordinary Kriging. Multiple Linear Regression analysis was then conducted by linking various land uses and crop patterns to assess their impacts on nitrogen pollution. The results revealed that obvious increasing tendency of Ammonia-N concentration was found in the region of Erlin Town in Changhua, and that for Nitrate-N was appeared in Huwei Town of Yunlin. More than half of total observation wells showed that concentrations of Ammonia-N and Nitrate-N were in a state of negative correlation, 11 wells simultaneously decreased, and 4 wells under simultaneously growth state. The area with an increasing tendency of Ammonia-N concentration was mainly distributed by land use of paddy field, but the area with increasing tendency of Nitrate-N concentration mainly located in paddy-upland crop rotational fields. It also proved that redox conditions for various agricultural activities and land uses could result in different nitrogen pollution patterns. Through the research results, it can be used as a reference for the establishment of agricultural non-point source pollution control and related groundwater protection measures.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3論文架構流程簡介 2
第二章 文獻回顧 4
2.1 農業氮肥施用探討 4
2.1.1水、旱田環境之氮素轉化作用 5
2.1.2水、旱田環境之氮素入滲淋洗作用 6
2.2台灣地下水氮素汙染 7
2.3氮素於人體及環境危害 8
第三章 材料與方法 9
3.1研究區域概述 9
3.1.1氣象水文概況 10
3.1.2地表水水文特性 10
3.1.3地下水水文特性 11
3.1.4土地利用概述 11
3.1.5灌溉圳路 12
3.1.6輪作制度 14
3.1.7濁水溪沖積扇地下水監測井網 15
3.2汙染物濃度長期趨勢分析 17
3.3區域地理統計 17
3.3.1變異性分析 18
3.3.2半變異元模式 19
3.3.3交叉驗證 20
3.4 PEARSON相關性分析 21
3.5多元線性迴歸分析 21
第四章 結果與討論 23
4.1氮素汙染現況 23
4.2氮素長期趨勢分析 27
4.2.1氨氮濃度趨勢空間推估分布圖 31
4.2.2硝酸鹽氮濃度趨勢空間推估分布圖 32
4.3氮素相關性分析 34
4.4氮素汙染與耕作制度探討 37
4.5氮素汙染與土地利用探討 38
4.6氮素汙染與農作面積探討 39
4.7綜合討論 43
第五章 結論與建議 47
5.1結論 47
5.2建議 48
參考文獻 49
附錄一 55
附錄二 62
論文參考文獻:1. Angelopoulos, K., Spiliopoulos, L.C., Mandoulaki, A., Theodorakopoulou, A., Kouvelas, A., (2009). Groundwater nitrate pollution in northern part of Achaia Prefecture. Desalination248:852-858
2. Babiker, I.S., Mohamed, M.A., Terao, H., Kato, K., Ohta, K., (2004). Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environment International29:1009-1017
3. Beaudoin, N., Saad, J.K., Laethem, C.V., Mary, B., (2005). Nitrate leaching in intensive agriculture in Northern France: Effect of farming practices, soils and crop rotations. Agriculture Ecosystems & Environment111:292-310
4. Bonton, A., Rouleau, A., Bouchard, C., Rodriguez, M.J., (2011) Nitrate transport modeling to evaluate source water protection scenarios for a municipal well in an agricultural area. Agricultural Systems104:429-439
5. Bouman, B.A.M., Castañeda, A.R., Bhuiyan S.I., (2002). Nitrate and pesticide contamination of groundwater under rice-based cropping systems: past and current evidence from the Philippines. Agriculture, Ecosystems & Environment92:185-199
6. Chowdary, V.M., Rao, N.H., Sarma, P.B.S., (2004). A coupled soil water and nitrogen balance model for flooded rice fields in India. Agriculture, Ecosystems and Environment 103:425-441
7. Cui, Y.L., Li, Y.H., Lu, G.A., Sha, Z,Y., (2004). Nitrogen movement and transformation with different water supply for paddy rice. Advances in Water Science15
8. Fageria, N.K., Baligar, V.C., (2005). Enhancing Nitrogen Use Efficiency in Crop Plants Advances in Agronomy, Advances in Agronomy88:97-185
9. Galloway, J.N., Dentener, F.J., Capone, D.G., (2004). Nitrogen Cycles: Past, Present, and Future. Biogeochemistry70:153–226
10. Gao, Y., Zhu, B., Wang, T., Wang, Y., (2012). Seasonal change of non-point source pollution-induced bioavailable phosphorus loss: A case study of Southwestern China. Journal of Hydrology420-421:373-379
11. Hamza, M.H., Added, A., Rodríguez, R., Abdeljaoued, S., Mammou, A.B., (2007). A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras Jebel-Raf Raf aquifer, Northern Tunisia). Journal of Environmental Management84:12-19
12. Jang, C.S., Liu, C.W., (2005). Contamination potential of nitrogen compouds in the heterogeneous aquifers of the Choushui River alluvial fan, Taiwan. Journal of Contaminant Hydrology 79:35-155
13. Jang, C.S., Chen, S.K., (2015). Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones. Journal of Hydrology523:441-451
14. Ju, X.T., Kou, C.L., Zhang, F.S., Christie, P., (2006). Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environmental Pollution143:117-125
15. Kao, Y.H., Liu, C.W., Jang, C.S., Zanh, S.W., Lin, K.H., Assessment of nitrogen contamination of groundwater in paddy and upland fields. Paddy Water Environ9:301-307
16. Masetti, M., Poli, S., Sterlacchini, S., Beretta, G.P., Facchi, A., (2008). Spatial and statistical assessment of factors influencing nitrate contamination in groundwater. Journal of Environmental Management86:272-281
17. Nakagawa, K., Amano, H., Takao, Y., Hosono, T., Berndtsson, R., (2017). On the use of coprostanol to identify source of nitrate pollution in groundwater. Journal of Hydrology550:663-668
18. Nakasone, H., Kuroda, H., Kato, T., Tabuchi, T., (2003). Nitrogen removal from water containing high nitrate nitrogen in paddy field (wetland). Water Science and Technology48:209-217
19. Narany, T.S., Aris, A.Z., Sefie, A., Keesstra, S., (2017). Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia. Science of The Total Environment599-600:844-853
20. Nektarios, N.K., George, P.K., Georgios C.K., (2017). A GIS policy approach for assessing the effect of fertilizers on the quality of drinking and irrigation water and wellhead protection zones (Crete, Greece). Journal of Environmental Management 189:150-159
21. Nguyen, V.N., Bang, S., Viet, P.H., Kim, K.W., (2009). Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam. Environment International35:466-472
22. Pathak, B.K., Kazama, F., Toshiaki, I., (2004). Monitoring of Nitrogen Leaching from a Tropical Paddy in Thailand. CIGR Journal6:1-11
23. Phogat, V., Skewes, M.A., Cox, J.W., (2013). Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree. Agricultural Water Management, 127:74-84
24. Raun, W.R., Johnson, G.V., Phillips, S.B., Westerman, R.L., (1998). Effect of long-term N fertilization on soil organic C and total N in continuous wheat under conventional tillage in Oklahoma. Soil and Tillage Research47:323-330
25. Robertson, G.P., Vitousek, P.M., (2009). Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annual Review of Environment and Resources34:97-125
26. Sakadevan, K., Nguyen, M.L., (2017). Chapter Four - Livestock Production and Its Impact on Nutrient Pollution and Greenhouse Gas Emissions. Advances in Agronomy141:147-184
27. Thorburn, P. J., Biggs, J.S., Weier, K.L., Keating, B.A., (2003). Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agriculture, Ecosystems & Environment94:49-58
28. Tian, Y.H., Yin, B., Yang, L.Z., Yin, S.X., Zhu, Z.L., (2007). Nitrogen Runoff and Leaching Losses During Rice-Wheat Rotations in Taihu Lake Region, China. Pedosphere17:445-456
29. Tutmez, B., (2009). Assessing uncertainty of nitrate variability in groundwater. Ecological Informatics4:42-47
30. Vitousek, P.M., Mooney, H.A., Lubchenco, J., Melillo, J.M., (1997). Human Domination of Earth’s Ecosystems. Science, New Series:494-499
31. Wilson, G.B., Andrews, J.N., Bath, A.H., (1994). The nitrogen isotope composition of groundwater nitrates from the East Midlands Triassic Sandstone aquifer, England. Journal of Hydrology157:35-46
32. Wolfe, A.H., Patz, J.A., (2002). Reactive nitrogen and human health: Acute and long-term implications. Scopus31:120-125
33. Wu, J., Ding, J., Lu, J., (2016). Nitrate Transport Characteristics in the Soil and Groundwater. Procedia Engineering157:246-254
34. Zhan, X., Xu, Z., Sun, X., Dong, W., Ballantine, D., (2013). Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004–2010. Journal of Environmental Sciences25:1007-1014
35. Zhang, Y., Li, F., Zhan, Q., Li, J., Liu, Q., (2014). Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes. Science of The Total Environment490:213-222
36. Zhou, S., Nishiyama, K., Watanabe, Y., Hosomi, M., (2009). Nitrogen budget and ammonia volatilization in paddy fields fertilized with liquid cattle waste. Water Air Soil Polluation201:135-147
37. Zhu, J.G., Liu, G., Zhang, Y.L., Xing, G.X., (2003). Nitrate distribution and denitrification in the saturated zone of paddy field under rice/wheat rotation. Chemosphere50:725-732
38. Zou, J., Huang, Y., Zheng, X., Wang, Y., (2007). Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmospheric Environment41:8030-8042
39. 中央地質調查所,水文地質資料庫,http://hydro.moeacgs.gov.tw/plain/,2018
40. 中央地質調查所「台灣地區地下水觀測網第一期計畫濁水溪沖積扇水文地質調查研究總報告」,中央地質調查所,2014
41. 中興工程顧問股份有限公司「濁水溪沖積扇地面地下水聯合運用管理模式建立與機制評估」,經濟部水利署中區水資源局,2007
42. 內政部國土測繪中心,國土測繪圖資https://whgis.nlsc.gov.tw/GisMap/NLSCGisMap.aspx,2018
43. 台灣彰化農田水利會,「灌溉水質監測結果」,2016
44. 台灣雲林農田水利會,「灌溉水質監測結果」,2016
45. 行政院農業委員會農田水利入口網,http://doie.coa.gov.tw/,2018
46. 行政院農業委員會,https://www.coa.gov.tw/,2018
47. 行政院農業委員會,農業及農地資源盤查結果查詢圖台https://map.coa.gov.tw/farmland/survey105.html,2018
48. 行政院環境保護署「全國地下水管理與整合計畫」,2017
49. 行政院環境保護署「地下水污染監測基準」,2010
50. 行政院環境保護署土壤及地下水污染整治基金管理會「103 年度區域性監測井水質檢測成果」,2015
51. 行政院環境保護署,全球環境水質監測資訊網https://wq.epa.gov.tw/Code/?Languages=tw,2018
52. 林建文「濁水溪沖積扇地下水硝酸鹽氮汙染潛勢評估與預測模式建立」,碩士論文,國立中央大學,台北
53. 浮海梅、金雲霄(2009)「淺談地下水硝酸鹽氮汙染」,地下水31卷P85-87
54. 雲林縣政府「雲林縣統計年報」,2006-2012
55. 黃裕翔(2012)「應用通用共克利金法結合不同雨量站網資料之空間變異推估」,碩士論文,國立台北科技大學,台北
56. 經濟部水利署「101年度水文年報第三部分-地下水」,2012
57. 彰化縣政府「彰化縣統計年報」,2006-2012
58. 謝致恆(2016)「結合DRASTIC及混合型農業土地利用含水層脆弱度評估模式之發展-以濁水溪沖積扇為例」,碩士論文,國立台北科技大學,台北
59. 羅秋雄(2005)「作物施肥手冊」,行政院農業委員會農糧署
論文全文使用權限:同意授權於2021-08-27起公開