現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:屏東地區地下水大腸桿菌群之人體健康風險評估 [以論文名稱查詢館藏系統]
論文英文名稱:Human health risk assessment induced by groundwater E. coli in the Pingtung Plain [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:張君珮
英文姓名:Chun-Pei Chang
研究生學號:105428039
學位類別:碩士
語文別:中文
口試日期:2018/07/15
論文頁數:60
指導教授中文名:陳世楷;張誠信
指導教授英文名:Shih-Kai Chen;Cheng-Shin Jang
口試委員中文名:朱子偉;王聖瑋
口試委員英文名:Tzyy-Woei Chu;Sheng-Wei Wang
中文關鍵詞:屏東平原地下水大腸桿菌指標克利金法健康風險評估
英文關鍵詞:Pingtung PlainGroundwaterE. coliIndicator KrigingHealth Risk Assessment
論文中文摘要:屏東平原地下水資源充沛,為部分地區居民主要民生用水來源,然而在使用地下水洗滌時,往往意外攝食含大腸桿菌的地下水,此糞口傳染途徑,將對人體造成不良的健康影響。本研究目的是使用指標克利金法進行屏東地區地下水致病性大腸桿菌之人體健康風險評估,並以人體飲用水每年一萬分之一發生機率當作風險管理門檻,探討各地區適合的每日地下水洗滌使用次數。首先,使用多門檻指標克利金來估計地下水大腸桿菌空間發生機率分布,並建立條件累積機率函數;隨後,在網格上以條件累積機率函數為基礎,使用蒙地卡羅模擬法進行1,000次模擬;最後,將大腸桿菌濃度分布及洗滌水攝食量等參數代入β-Poisson劑量-反應方程式來量化使用屏東平原地下水的健康風險,並計算格網內風險分布第95百分位為代表風險值。分析結果顯示,屏東平原地下水使用風險通過每年一萬分之一的可接受風險的區域微乎其微,其中萬丹鄉、竹田鄉、內埔鄉、新園鄉及長治鄉地區使用風險超過標準十倍,因此,使用地下水構成了嚴重的威脅。在提升自來水普及率以前,應限制居民飲用地下水,減少抽取地下水做為民生用水。
論文英文摘要:Groundwater is abundant in Pingtung Plain and frequently used for household demands, including washing. However, residents may accidentally ingest groundwater containing E. coli, resulting in adverse health effects. This study aims to spatially map health risks for groundwater with E. coli in the Pingtung Plain using indicator kriging (IK). A drinking guideline of one ten-thousandth per year was regarded as a threshold of risk management and used to determine the daily frequency of groundwater use for washing. First, the multi-threshold IK was used to probabilistically estimate the distributions of E. coli and determine the conditional cumulative distribution function (CCDF). Subsequently, according to the CCDF at each cell, 1,000 simulations data were produced using Monte Carlo simulation to characterize the uncertainty. Finally, the parameters such as E. coli concentration and ingestion amount for washing were integrated into the β-Poisson dose-response equation to quantify the health risk of using groundwater in Pingtung Plain. The 95th percentile of the risk distribution in the grid was determined as the representative risk value. The analysis results revealed that the groundwater use risk exceeding tenfold of one ten-thousandth per year mainly occurs in Wandan, Jhutian, Neipu, Shinyuan, and Changjhih Townships. Therefore, groundwater use for washing poses a significant health threat in the Pingtung Plain. Before tap water is predominant, residents in the Pingtung Plain should reduce groundwater use for household demands and restrict groundwater for drinking.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 論文架構流程簡介 2
第二章 文獻回顧 4
2.1 飲用水水質指標 4
2.2 飲用水水質微生物標準 4
2.3 定量微生物風險評估之應用 6
2.4 地理統計在環境汙染物空間分布推估之應用 7
第三章 材料與方法 9
3.1 研究區域 9
3.1.1 流域概況 9
3.1.2 氣候概況 9
3.1.3 地下水文概況 10
3.2 水質數據的蒐集 11
3.3 地理統計方法 12
3.3.1 變異性分析 12
3.3.2 指標克利金 15
3.3.3 使用CCDF建立機率場 16
3.4 健康風險評估 16
3.5 蒙地卡羅模擬 20
第四章 結果與討論 21
4.1 資料統計分析 21
4.2 指標克利金變異性分析 25
4.3 空間機率估計和CCDF的建立 32
4.4 使用地下水的風險評估 41
4.5 綜合比較 46
4.5.1 大腸桿菌汙染來源 46
4.5.2 健康風險管理對策 48
第五章 結論與建議 51
5.1 結論 51
5.2 建議 52
參考文獻 53
論文參考文獻:1. Barbaras, S. (1986) Monitoring natural waters for drinking-water quality. WHO Stat 39: 32-45.
2. Benke, K.K., Hamilton, A.J. (2008) Quantitative microbial risk assessment: Uncertainty and measures of central tendency for skewed distributions. Stochastic Environmental Research and Risk Assessment, vol 22, no 4, pp 533-9.
3. Brenda, C.M., Adam, P.S., Christine, A., Roland, H., Erin, A.M., Wan, L.L., Victor, D.M. (2018) Environmental arsenic exposure: From genetic susceptibility to pathogenesis. Environment International 112: 183-197.
4. Castrignanò, A., Goovaerts, P., Lulli, L., Bragato, G. (2000) A geostatistical approach to estimate probability of occurrence of Tuber melanosporum in relation to some soil properties. Geoderma 98: 95-113.
5. Chilès, J.P., Delfiner, P. (1999) Geostatistics: Modeling Spatial Uncertainty. New York: John Wiley & Sons Inc., pp 283-287.
6. Cressie, N. (1993) Statistics for spatial data. Wiley, New York.
7. Delhomme, J.P. (1979) Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach. Water Resources Research. Volume15, Issue2, pp 269-280.
8. Deutsch, C.V., Journel A.G. (1998) GSLIB: geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York.
9. Enwright, N., Hudak, P.F. (2009) Spatial distribution of nitrate and related factors in the High Plains Aquifer, Texas. Environmental Geology. Volume 58, Issue 7, pp 1541-1548.
10. European Union (EU) (2014) European Union (drinking water) regulations 2014. Statutory instruments. S.I. No. 122.
11. Françoise Bichai, Patrick W.M.H. Smeets (2013) Using QMRA-based regulation as a water quality management tool in the water security challenge: Experience from the Netherlands and Australia. Water Research 47: 7315-7326.
12. Genthe, B., Rodda, N. (1999) Application of Health Risk Assessment Techniques toMicrobial Monitoring Data. WRC Report No. 470/1/99. Water Research Commission, Pretoria, South Africa.
13. Geosyntec (2008) Dry and wet weather risk assessment of human health impacts of disinfection VS. no disinfection of the Chicago Area Waterway System (CWS). Chicago.
14. Goovaerts, P. (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York, pp 259-368.
15. Goovaerts, P., Semrau, J., Lontoh, S. (2001) Monte Carlo analysis of uncertainty attached to microbial pollutant degradation rates. Environ Sci Technol 35: 3924-3930.
16. Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., Nriagu, J. (2005) Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour Res. doi:10.1029/2004WR003705.
17. Haas, C.N., Rose, J.B., Gerba, C.P. (1999) Quantitative microbial risk assessment. John Wiley & Sons: New York.
18. Haas, C.N., Rose, J.B., Gerba, C.P. (2014) Quantitative microbial risk assessment, 2nd edn. Wiley, New York, pp 72-73.
19. Haas, C.N. (2015) Microbial dose response modeling: past, present, and future. Environ Sci Technol 49(3): 1245-1259.
20. Health Canada (2012) Guidelines for Canadian recreational water quality, 3rd edn. Water, Air and Climate Change Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, pp 26.
21. Health Canada (2017) Guidelines for Canadian Drinking Water Quality-Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario.
22. Hoeksema, R.J., Kitanidis, P.K. (1985) Analysis of spatial structure of properties of selected aquifers. Water Resources Research 21: 563-572.
23. Hsu, S.Y., Hsu, B.M., Ji, W.T., Hsu, T.K., Kao, P.M., Shen, T.Y., Fan, C.W., Huang, Y.L. (2014) Evaluation of diarrheagenic E. coli in riversheds by quantitative PCR in combination with enrichment. Water Science & Technology, 70(12): 1955-1960.
24. Isaaks, E.H., Srivastava, R.M. (1989) Applied Geostatistics. New York: Oxford University Press.
25. Jang, C.S., Liu, C.W., Lu, K.L., Lin, C.C. (2007) Delimitation of arsenic-contaminated groundwater using risk-based indicator approaches around blackfoot disease hyperendemic areas of southern Taiwan. Environmental Monitoring and Assessment 134: 293-304.
26. Jang, C.S., Chen, S.K., Lin, C.C. (2008). Using multiple-variable indicator kriging to assess groundwater quality for irrigation in the aquifers of the Choushui River alluvial fan. Hydrological Processes 22: 4477-4489.
27. Jang, C.S., Liou, Y.T., Liang, C.P. (2010) Probabilistically determining roles of groundwater used in aquacultural fishponds. Journal of Hydrology 388: 491-500.
28. Juang, K.W., Lee, D.Y. (1998) Simple indicator Kriging for estimating the probability of incorrectly delineating hazardous areas in a contaminated site. Environ Sci Technol 32: 2487-2493.
29. Knobeloch, L., Salna, B., Hogan, A., Postle, J., Anderson, H. (2000) Blue babies and nitrate-contaminated well water. Environmental Health Perspectives, 108(7), pp 675-678.
30. Lazhar, B., Lotfi, M., Tahoora, S.N., Ammar, T. (2017) Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundwater for Sustainable Development 4: 12-22.
31. Lee, J.J., Jang, C.S., Wang, S.W., Liu, C.W. (2007) Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose-response model. Science of the Total Environment 384: 151-162.
32. Liang, C.P., Chen, J.S., Chien, Y.C., Chen, C.F. (2018) Spatial analysis of the risk to human health from exposure to arsenic contaminated groundwater: A kriging approach. Science of the Total Environment 627: 1048-1057.
33. Lin, Y.P., Chang, T.K., Shih, C.W., Tseng, C.H. (2002) Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy metals. Environmental Geology 42: 900-909.
34. Liu, C.W., Jang, C.S., Liao, C.M. (2004) Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Science of the Total Environment 321: 173-188.
35. Marinoni, O. (2003) Improving geological models using a combined ordinary–indicator kriging approach. Engineering Geology 69: 37-45.
36. National Research Council (NRC) (1983) Risk Assessment in Federal Government:Managing the Process. Washington.
37. Prasai, T., Lekhak, B., Joshi, D.R., Baral, M.P. (2007) Microbiological analysis of drinking water of Kathmandu Valley. Scientific World 5 (5): 112-114.
38. Pujari, P.R., Padmakar, C., Labhasetwar, P.K., Mahore, P., Ganguly, A.K. (2012) Assessment of the impact of on-site sanitation systems on groundwater pollution in two diverse geological settings--a case study from India. Environ Monit Assess 184: 251-263.
39. Rijal, G., Tolson, J.K., Petropoulou, C., Granato, T.C., Glymph, A., Gerba, C., Deflaun, M.F., O’Connor, C., Kollias, L., Lanyon, R. (2011) Microbial risk assessment for recreational use of the Chicago Area Waterway System. Journal of Water and Health 9(1): 169-186.
40. Shrestha, S., Haramoto, E., Malla, R., Nishida, K. (2015) Risk of diarrhoea from shallow groundwater contaminated with enteropathogens in the Kathmandu Valley, Nepal. Journal of Water and Health 13(1): 259-269.
41. Saisana, M., Dubois, G., Chaloulakou, A., Spyrellis, N. (2004) Classification criteria and probability risk maps: Limitations and perspectives. Environmental Science & Technology 38: 1275-1281.
42. Timm, C., Luther, S., Jurzik, L., Hamza, I.A., Kistemann, T. (2016) Applying QMRA and DALY to assess health risks from river bathing. International Journal of Hygiene and Environmental Health 219: 681-692.
43. Van Geen, A., Ahmed, K.M., Akita, Y., Alam, M.J., Culligan, P.J., Emch, M., Escamilla, V., Feighery, J., Ferguson, A.S., Knappett, P., Layton, A.C., Mailloux, B.J., McKay, L.D., Mey, J.L., Serre, M.L., Streatfield, P.K., Wu, J., Yunus, M. (2011) Fecal contamination of shallow tubewells in Bangladesh inversely related to arsenic. Environ. Sci. Technol 45: 1199-1205.
44. Van Meirvenne, M., Goovaerts, P. (2001) Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold. Geoderma 102: 75-100.
45. U.S. Environmental Protection Agency (U.S. EPA) (2001) Risk assessment guidance for superfund (RAGS) volume III—part A: process for conducting probabilistic risk assessment. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, DC, pp 3-1-3-27.
46. U.S. Environmental Protection Agency (U.S. EPA) (2012) Recreational water quality criteria. Office of Water, U.S. Environmental Protection Agency, Washington, DC, pp 14.
47. U.S. Environmental Protection Agency (U.S. EPA) (2014) Microbiological risk assessment (MRA) tools, methods, and approaches for water media. Office of Science and Technology Office of Water U.S. Environmental Protection Agency Washington, DC, pp 90-94 and pp 104-110.
48. U.S. Environmental Protection Agency (U.S. EPA) (2018) Drinking Water Standards and Health Advisories. Office of Water, U.S. Environmental Protection Agency, Washington, DC.
49. Wakayama, H. (2014) Revision of Drinking Water Quality Standards in Japan. Technical Official, Office of Drinking Water Quality Management. Water Supply Division, Health Service Bureau. Ministry of Health, Labour and Welfare.
50. Warner, N.R., Levy, J., Harpp, K., Farruggia, F. (2008) Drinking water quality in Nepal’s Kathmandu Valley: a survey and assessment of selected controlling site characteristics. Hydrogeology Journal 16: 321-334.
51. Woodbury, A.D., Sudicky, E.A. (1991) The geostatistical characteristics of the Borden aquifer. Water Resources Research. Volume27, Issue4, pp 533-546.
52. World Health Organization (WHO) (2003) Guidelines for safe recreational water environments. Coastal and fresh waters, vol 1. World Health Organization, Geneva, pp 82-87.
53. World Health Organization (WHO) (2016) Quantitative microbial risk assessment: application for water safety management. pp 148-156.
54. World Health Organization (WHO) (2018) A global overview of national regulations and standards for drinking-water quality. Switzerland.
55. 中央地質調查所(2014)「地下水補注地質敏感區劃定計畫書」,經濟部水利署。
56. 內政部營建署(2018)「全國汙水下水道用戶接管普及率及整體汙水處理率統計表」。
https://goo.gl/WoCQpe
57. 台灣自來水股份有限公司(2016)「台灣自來水事業統計年報(中華民國104年)」,第38期。
58. 台灣自來水股份有限公司(2017)「台灣自來水事業統計年報」。
https://www.water.gov.tw/np.aspx?ctNode=1090&mp=1
59. 行政院農業委員會(2018)「養豬頭數調查報告-中華民國107年5月底」,行政院農業委員會。
60. 行政院農業委員會(2018)「禽畜統計調查結果」,農業統計資料查詢。
http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
61. 行政院環境保護署(2009)「飲用水水質標準」。
62. 行政院環境保護署(2015)「自來水普及率」,環境資源資料庫。
https://goo.gl/Y9eafu
63. 吳芳姿,王明琴,陳豪勇(2005)「台灣地區腹瀉型病原性大腸桿菌流行概況分析」,行政院衛生署疾病管制局。
64. 周晴,陳偉,席淑華(2017)「砷致癌機制研究進展」,中華地方病學雜誌,第36卷,第12期,第933-936頁。
65. 林朝棨(1957)「臺灣地形」,臺灣省文獻委員會。
66. 徐鐵良(1961)「臺灣南部屏東各地之自升地下水系」,中國地質學會會刊,第4卷,第73-81頁。
67. 財團法人農業工程研究中心(2014)「101至103年度地下水水質檢測分析與評估(3/3)」,經濟部水利署。
68. 財團法人農業工程研究中心(2015)「104年度地下水水質檢測分析與評估」,經濟部水利署。
69. 財團法人農業工程研究中心(2016)「105年度地下水水質檢測分析與評估」,經濟部水利署。
70. 黃裕翔(2012)「應用通用共克利金法結合不同雨量站網資料之空間變異推估」,碩士論文,國立臺北科技大學,臺北。
71. 經濟部水利署(2014)「學習教材」,地下水觀測網。
http://pc183.hy.ntu.edu.tw/gwater/qw-learning.php
72. 經濟部水利署(2017)「地下水水位觀測井井況」,政府資料開放平臺。
https://data.gov.tw/dataset/32718
論文全文使用權限:同意授權於2023-08-26起公開