現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:曲線橋梁之耐震性能評估方法研究 [以論文名稱查詢館藏系統]
論文英文名稱:Study on Seismic Evaluation of Curve Bridges [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:王科欣
英文姓名:Ke-Xin Wang
研究生學號:105428058
學位類別:碩士
語文別:中文
口試日期:2018/07/24
論文頁數:108
指導教授中文名:宋裕祺
指導教授英文名:Yu-Chi Sung
口試委員中文名:尹世洵;蔡益超
中文關鍵詞:橋梁耐震評估曲線橋梁雙向彎矩扭矩
英文關鍵詞:Seismic EvaluationCurve BridgeBiaxial Bending MomentTorque
論文中文摘要:國內橋梁耐震能力評估多以側推分析法或非線性動力歷時分析法,兩者分析方法皆與橋梁振動特性相關。一般直線橋梁耐震能力評估係依據行車向與垂直行車向之振動特性分配地震力進行側推分析,藉由輔助程式計算梁柱構件之非線性行為模式作為梁柱構件塑性鉸設定,利用容量震譜之檢核方式判別橋梁之耐震能力是否足夠。
然而,曲線橋梁振動特性與直線橋梁不盡相同,由於主梁平面彎曲使得下部結構墩柱的支承點不在同一直線上造成曲線橋梁上部與下部結構均受到彎矩與扭矩作用的情形,基於此種結構形式,當曲線橋梁承受地震力作用時,柱構材承受軸力、扭矩與雙向彎矩反覆作用,因此針對曲線橋梁之力學特性須加以探討,國內目前尚未發展出一套完整的曲線橋梁耐震評估流程,藉由分析了解曲線橋梁的基本特性,並依據力學行為進行梁柱構件塑性鉸之設定及檢核,以達到準確分析之目的。
本研究提供一套完整的曲線橋梁耐震性能評估分析流程,考量曲線橋梁承受軸力與雙向彎矩作用下的力學特性,利用纖維元素法將柱斷面圍束區與非圍束區切割成數個纖維元素,考量鋼筋與混凝土之材料非線性,並符合力平衡、材料組成律與變形諧合的原則下,分析其軸力-彎矩交互影響曲線(PMM interaction curve),同時考量曲線橋梁受扭矩之反應並定義其非線性行為。本研究使用SAP2000結構分析軟體建立曲線橋梁分析模型,並以上述之理論分析建立各橋柱之塑鉸,考量地震於不同方向角度及不同大小輸入對曲線橋梁之影響,透過分析各橋柱之反應並同時開發一套雙向彎矩檢核程式,檢核不同地震狀況下柱構件之破壞順序及破壞模式,最後整理出分析結果彙整表作為本研究案例的整體反應。研究所得成果冀能提供工程師從事曲線橋梁耐震分析與設計之參考。
論文英文摘要:The seismic capacity of domestic bridges evaluation mostly use pushover analysis or nonlinear timehistory analysis.Both of the two methods are closely linked with the vibration characteristics of bridges. Generally, the seismic capacity evaluation of straight bridges is based on the distribution of seismic forces to the vibration characteristics of the vehicle and the vertical direction. The nonlinear behavior pattern of the beam-column members is calculated by the auxiliary program as the plastic hinge setting of the beam-column members, and the capacity spectrum is utilized. The method of checking determines whether the seismic resistance of the bridge is sufficient.
However, the vibration characteristics of curved bridges are not the same as straight bridges. Because the plane of the main beam is curved, the support points of the lower structure piers are not on the same straight line, and the upper and lower structures of the curved bridge are subjected to bending moment and torque. In the form of structure, when the curved bridge is subjected to seismic force, the column member is subjected to the axial force, the torque and the biaxial bending moment. Therefore, the mechanical characteristics of the curved bridge must be discussed. Currently, a complete set of curved bridges has not been developed in domestic.Through analysis to understand the basic characteristics of the curved bridge, and according to the mechanical behavior of the beam and column members plastic hinge setting and inspection, in order to achieve the purpose of accurate analysis.
This study provides a complete set of analysis and analysis process for seismic performance of curved bridges. Considering the mechanical properties of curved bridges subjected to axial force and biaxial bending moment, the fiber element method is used to cut the section of the column section into non-surrounded areas. The fiber element, considering the nonlinear of the material of steel and concrete, incorporating with equilibrium and compatibility condition, the constitutive law of concrete proposed by Kawashima et. al. as well as the elastoplastic model of reinforcement was taken into account mechanically, analyzes the axial force and biaxial bending moment interaction curve (PMM interaction curve), and considers the curve bridge to be subjected to torque. The reaction and define its nonlinear behavior. In this study, the SAP2000 structural analysis software was used to establish a curved bridge analysis model, and the plastic hinges of each bridge column were established by the above theoretical analysis. The effects of earthquakes on different directions and different grade of input on curved bridges were considered, and the responses of each bridge column were analyzed. At the same time, a biaxial bending moment check program was developed to check the failure order and failure pattern of column members under different earthquake conditions. Finally, the analysis results summary table was compiled as the overall reaction of the case study. The results of the research can provide engineers with reference for seismic analysis and design of curved bridges.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vii
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1 研究背景與目的 1
1.2 研究內容與方法 2
1.3 論文組織與架構 3
第二章 文獻回顧 7
2.1 前言 7
2.2 影響曲線橋梁動力特性研究 7
2.3 曲線橋梁分析方法之研究 11
2.4 小結 13
第三章 雙向彎矩應用方法之理論研究與探討 14
3.1 前言 14
3.2 軸力與彎矩互制效應 14
3.3 單向彎矩簡介 14
3.4 單向彎矩分析流程 16
3.5 雙向彎矩簡介 21
3.6 雙向彎矩分析流程 22
3.7 小結 26
第四章 鋼筋混凝土構材扭轉效應應用方法之研究與探討 27
4.1 前言 27
4.2 扭矩強度計算 27
4.2.1 開裂扭矩 27
4.2.2 極限扭矩 28
4.3 扭矩勁度計算 28
4.3.1 未開裂扭轉勁度(uncracked torsional rigidity) 28
4.3.2 開裂扭轉勁度(post-cracked torsional rigidity) 29
4.3.3 極限扭轉勁度(ultimate torsional rigidity) 29
4.4 扭矩與扭轉行為之扭矩塑性鉸設定 30
4.5 小結 31
第五章 偏心載重與彎矩互制效應之案例分析 32
5.1 前言 32
5.2 分析模型設定 32
5.2.1 單柱模擬 32
5.2.2 模型配置 32
5.2.3 載重設定 33
5.3 柱塑性鉸設定介紹 34
5.4 PMM與扭矩破壞模式 35
5.4.1 PMM雙向撓曲破壞模式 35
5.4.2 扭矩破壞模式 36
5.5 單柱案例分析 36
5.5.1 加速度歷時資料 36
5.5.2 案例一 38
5.5.3 案例二 44
5.5.4 案例三 50
5.5.5 扭矩與撓曲控制破壞之行為判定 56
5.6 小結 57
第六章 曲線橋梁之數值模型建置 58
6.1 前言 58
6.2 橋梁位置與結構配置簡介 58
6.3 SAP2000模型建置 60
6.3.1 結構分析模型說明 60
6.3.2 建立分析模型節點及元素 66
6.3.3 分析模型載重配置 66
6.3.4 支承方向設定及振態 67
6.3.5 構件塑鉸性質 68
6.3.6 構件非線性元素 74
6.3.7 分析模型週期比對 75
6.4 小結 76
第七章 曲線橋梁之分析及檢核 77
7.1 前言 77
7.2 分析流程說明 77
7.3 加速度歷時資料 79
7.4 設定地震輸入角度與大小 80
7.5 匯出非線性元素分析資訊 81
7.6 PMM檢核程式開發 82
7.7 MATLAB視覺化輔助工具 83
7.8 M2M3塑鉸檢核結果彙整 83
7.9 PMM檢核結果彙整 85
7.10扭矩檢核結果彙整 90
7.11 PM RATIO檢核結果彙整 92
7.12分析結果比對 96
7.12.1以不同地震角作用之構件反應分析 96
7.12.2以不同構件對地震角之反應分析 100
7.13小結 104
第八章 結論與建議 105
8.1 結論 105
8.2 建議 106
參考文獻 107
論文參考文獻:1. Kawashima, K., Penzien, J.,“曲線橋模型の動的応答に関する解析的研究”土木学会論文報告集,第284号・1979年4月。
2. Yamauchi, H., Choi, Otsuka, H.,“Study on seismic response of steel bearing supports in 4-span curved box-girder bridges,”Proceedings of the JSCE Earthquake Engineering Symposium, Vol. 29, pp.485-492, 2007。
3. E. Khan,M.J. Kowalsky,J.M. Nau. “Comparison of the Seismic Performance of Equivalent Straight and Curved Bridges due to Transverse Seismic Excitation,” 15th World Conference on Earthquake Engineering, NO. 196, pp 10, 2012。
4. Ni, Y., Chen, J., Teng, H., Jiang, H., “Influence of earthquake input angle on seismic response of curved girder bridge,” Journal of Traffic and Transportation Engineering (English Edition), Vol. 2, Issue 4, pp 233-241, 2015。
5. Tseng, W. S., Penzien, J., “Seismic Response Of Long Multiple-Span Highway Bridges” Earthquake Engineering And Structural Dynamics, Vol. 4, 25-48 ,1975。
6. Song, B., Pan, J.S., Liu, Q.,“Study On Critical Angle To The Seismic Response Of Curved Bridges Based On Pushover Method”The 14thWorld Conference on Earthquake Engineering October 12-17, 2008, Beijing, China。
7. Tseng, W. S., Penzien, J., “Seismic Analysis Of Long Multiple-Span Highway Bridges” Earthquake Engineering And Structural Dynamics, Vol. 4, 3-24 ,1975。
8. Kappos, A. J., Paraskeva, T., Sextos, A., “Modal pushover analysis as a means for the seismic assessment of bridge structures,” 4th European Workshop on the Seismic Behaviour of Irregular and Complex Structures, No. 49, pp 26-27。
9. Paraskeva, T. S., Kappos A. J., Sextos, A. G., “Extension of modal pushover analysis to seismic assessment of bridges” Earthquake Engineering And Structural Dynamics Earthquake, Vol.35,pp 1269-1293, 2006。
10. Falamarz-Sheikhabadi, M. R., Zerva, A., “Analytical Seismic Assessment of a Tall Long-Span Curved Reinforced-Concrete Bridge. Part II: Structural Response,” Journal of Earthquake Engineering, Vol.22, pp 1-30, 2015。
11. GAO, X. A., ZHOU, X. Y., Wang, L.,“Multi-Component Seismic Analysis For Irregular Structures,”13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, Paper No. 115, 2004。
12. 中國土木水利學會、台灣混凝土學會、美國混凝土學會台灣分會,「結構混凝土規範與解說(ACI 318-14)」,台北,2016。
13. Hsu, T.T.C., Torsion of Reinforced Concrete, Van Nostrand Reinhold Company. New York, 1984。
14. Tavio, Teng, S., “Effective Torsion Rigidity of Reinforced Concrete Members,” ACI Structural Journal, 101(2), 2004, pp. 252-260。
15. Lampert, P.,”Postcracking Stiffness of reinforced Concrete Beams In Torsion and Bending,” Analysis of Structural Systems for Torsion, SP-35, American Concrete Institute, Farmington Hills, Mich., 1973, pp. 385-433。
16. CSI, 1996, SAP2000: Integrated finite element analysis and design of structures, Computer and Structures, Inc., Berkeley, California.
17. 何明錦、蔡益超、宋裕祺,2012,鋼筋混凝土建築物耐震能力評估手冊:視窗化輔助分析系統SERCB Win2012,內政部建築研究所。
論文全文使用權限:同意授權於2023-08-24起公開