現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:氣候變遷情境下於翡翠水庫集水區之總最大日負荷規劃 [以論文名稱查詢館藏系統]
論文英文名稱:Nutrient Total Maximum Daily Load Program in Feitsui Reservoir Watershed under Climate Change scenarios [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:張君葳
英文姓名:Jyun-Wei Jhang
研究生學號:104428074
學位類別:碩士
語文別:中文
口試日期:2018/06/11
論文頁數:180
指導教授中文名:朱子偉
指導教授英文名:Tzyy-Woei Chu
口試委員中文名:朱子偉;陳韻如;謝龍生;謝慧民
中文關鍵詞:氣候變遷第五次評估報告SWAT模式營養鹽總最大日負荷最佳管理作業
英文關鍵詞:climate changeFifth Assessment ReportSWAT modelnutrientTMDLBMP
論文中文摘要:受到氣候變遷與全球暖化影響,極端降雨事件發生頻率逐漸增加。近年來極端氣候事件已成常態,不但降雨量增加,且降雨型態已由過去長延時降雨轉變為短延時且強降雨之特性,導致瞬間更大逕流產生,可能挾帶更多污染物進入水體。面對氣候變遷對水資源帶來的衝擊,事前的評估與調適則更顯重要。
本研究之目的旨為探討各種氣候變遷情境對於翡翠水庫集水區流量、泥砂與營養鹽負荷之影響,並根據甲類水體水質標準訂定營養鹽之總最大日負荷規劃。研究首先收集1995年至2014年翡翠水庫集水區之氣象、水文與地文資料,以進行非點源汙染模式-SWAT(Soil and Water Assessment Tool)之檢定和驗證。接著使用臺灣氣候變遷推估與資訊平台(Taiwan Climate Change Projection and Information Platform,TCCIP)產製的第五次評估報告(Fifth Assessment Report,AR5)氣候變遷情境資料,代入SWAT模擬各情境下集水區水文和營養鹽負荷之變化,並規劃總最大日負荷。
研究結果顯示在各氣候變遷情境下,未來流量的變化大致呈現豐水期愈豐,枯水期愈枯之趨勢。而營養鹽負荷變化的結果顯示,惟有總磷負荷高於總最大日負荷,需訂定削減計劃。針對總磷負荷最嚴重情境(世紀末,RCP8.5)的BMP效益模擬,研究建議若設置地點有空間限制,則以10公尺寬之過濾帶加上肥料混入之複合BMPs方案削減效率(33%)最好。另外,若只考量設置單一BMP且設置地點空間足夠,則以20公尺寬之過濾帶為最佳方案。
最後,本研究不僅評估未來各氣候變遷情境對於翡翠水庫集水區流量和營養鹽的影響,且模擬在不同情境下各項BMP的削減效率,以及建議多個最佳可行方案,以供決策者參考。在未來可能發生總磷負荷加劇而導致優養化的情形下,若能事先評估並及早做好總量管制和相關因應措施,則可降低未來集水區水生環境可能遭遇的衝擊與風險。
論文英文摘要:The climate change induced by global warming is anticipated to affect global hydrologic cycle extensively. Thus, irregular extreme weather events that follow in the wake of climate change could potentially become prevailing and profoundly impact on aquatic ecosystem both in quality and quantity.
This study aims to explore the hydrologic and water quality response under projected climate change scenarios within Feitsui reservoir watershed and further develop the Total Maximum Daily Load (TMDL) programs for nutrient control. First, data of climate, physiographic, hydrologic and water quality from year 1995 to 2014 were collected for SWAT model’s calibration and validation. Moreover, weather data of climate change scenarios generated by Taiwan Climate Change Projection and Information Platform (TCCIP) based on the Fifth Assessment Report (AR5) were employed to SWAT model to predict the associated responses. In addition, the nutrient TMDL program was established in answer to climate change impacts.
The results indicate that the total runoff of watershed will increase and decrease during the wet and dry seasons, respectively, under proposed climate change scenarios. However, only total phosphorus loading among all nutrients exceed the projected TMDL based on the water quality standards of Category A water bodies. The further Best Management Practice (BMP) simulations show that if field space is limited, field border of 10 m width combined with manure incorporation reach the best total phosphorus reduction (33%) for the worst climate change scenario (late-century with RCP 8.5). Additionally, if single BMP is required and enough field space presented, field border of 20 m becomes the best selection.
Overall, this study evaluated the hydrologic and water quality responses thoroughly under climate change impacts. Moreover, various BMP efficiencies were scientifically assessed and investigated. The complete evaluation should provide adequate information and a better decision making guidance for watershed managements in order to effectively conserve water resources and lessen the impacts and risks of future climate change.
論文目次:摘 要 i
ABSTRACT iii
誌謝 v
目 錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 3
1.3研究架構及流程 5
第二章 文獻回顧 7
2.1氣候變遷之衝擊 7
2.2 SWAT模式之應用 11
2.3總最大日負荷規劃 13
第三章 研究方法 18
3.1氣候變遷資料繁衍 18
3.1.1氣候變遷情境 18
3.1.2多重模式平均 19
3.1.3統計降尺度 24
3.1.4天氣產生器LARS-WG 26
3.2 SWAT模式背景與沿革 28
3.3 SWAT模式介紹 30
3.3.1水文 31
3.3.2泥沙 40
3.3.3氮 43
3.3.4磷 45
3.3.5水庫 47
3.4模式檢定驗證 50
3.4.1配適度指標 54
3.5總最大日負荷設計 56
3.5.1最佳管理作業情境模擬 58
第四章 研究區域 63
4.1地理環境 63
4.1.1子集水區之劃分 64
4.1.2土地利用狀況 65
4.1.3土壤種類分布 67
4.1.4集水區點源位置分布 68
4.1.5測站位置分布 69
4.2資料收集與應用 70
4.2.1氣象資料 70
4.2.2水文與水質監測資料 71
4.2.3茶園施肥 74
4.2.4農地施肥 76
第五章 結果與討論 78
5.1 模式檢定驗證結果 78
5.1.1坪林站流量與水庫入流量 83
5.1.2坪林站泥砂 87
5.1.3營養鹽模擬 90
5.2氣候變遷之模擬結果 113
5.2.1降雨量、溫度與流量的變化 113
5.2.2營養鹽的變化 126
5.3總最大日負荷規劃結果 139
5.3.1最佳管理作業模擬結果 152
第六章 結論與建議 161
6.1結論 161
6.2建議 163
參考文獻 164
附錄A:模式流量、總磷月模擬結果圖 173
附錄B:RCP情境流量、總磷月改變率 177
論文參考文獻:1. ASAE (American Society of Agricultural Engineers), Design, Layout, Construction and Maintenance of Terrace Systems, 2003.
2. Arnold, J. G., Williams, J. R., Nicks, A. D. and Sammons, N. B. (1990). “SWRRB:A basin scale simulation model for soil and water resources management,”Texas A&M Univ. Press.
3. Allen, R.G. 1986. A Penman for all seasons. J. Irrig. and Drain Engng., ASCE, 112(4): 348-368.
4. Allen, R.G., M.E. Jensen, J.L. Wright, and R.D. Burman. 1989. Operational estimates of evapotranspiration. Agron. J. 81:650-662.
5. ASAE(American Society of Agricultural Engineers)(2003).“Design, layout, construction, and maintenance of terrace systems,”ASAE Standards S268.4.
6. Arnold, J.G., Kiniry, J.R., Srinivasan, R., et al.,“Soil and Water Assessment Tool Input/Output Documentation Version 2012,”, 2012.
7. Butcher, J., Johnson, T., Nover, D. and Sarkar, S. (2014). Incorporating the effects of increased atmospheric CO2 in watershed model projections of climate change impacts. Journal of Hydrology, 513, pp.322-334.
8. Chattopadhyay (2014). CLIMATE CHANGE IMPACT ASSESSMENT ON WATERSHED HYDROLOGY: A COMPARISON OF THREE APPROACHES. American Journal of Engineering and Applied Sciences, 7(1), 122–128.
9. Chow, V.T. 1959. Open-channel hydraulics. McGraw-Hill, New York.
10. D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel and T. L. Veith, "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations," Transactions of the ASABE, vol. 50, no. 3, 2007, pp. 885-900.
11. Green, W. H. and Ampt, G. A.(1911).“Studies on soil physics, 1. The flow of air and water through soils,”Journal of Agricultural Sciences, Volume 4, pp. 11-24.
12. Himanshu, S., Pandey, A. and Shrestha, P. (2016). Application of SWAT in an Indian river basin for modeling runoff, sediment and water balance. Environmental Earth Sciences, 76(1).
13. Haas, M., Guse, B. and Fohrer, N. (2017). Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. Journal of Environmental Management, 196, pp.347-364.
14. Harrison, P. A., Butterfield, R. E., & Downing, T. E. (1995). Climate change and agriculture in Europe: assessment of impacts and adaptations. Environmental Change Unit, University of Oxford.
15. Hargreaves, G.H. and Z.A. Samani. 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture 1:96-99.
16. J.-Y. Park, M.-J. Park, S.-R. Ahn, G.-A. Park, J.-E. Yi, G.-S. Kim, R. Srinivasan and S.-J. Kim (2011). Assessment of Future Climate Change Impacts on Water Quantity and Quality for a Mountainous Dam Watershed Using SWAT. Transactions of the ASABE, 54(5), pp.1725-1737.
17. Jang, S., Ahn, S. and Kim, S. (2017). Evaluation of executable best management practices in Haean highland agricultural catchment of South Korea using SWAT. Agricultural Water Management, 180, pp.224-234.
18. Jinsoo Kim(2013). Impacts of climate change under IPCC RCP scenarios on streamflow and water quality in the Youngsan Basin, South Korea. Disaster Advances, 6(12), 134-141.
19. J. Singh, H. V. Knapp and M. Demissie, "Hydrologic Modeling of the Iroquois River Watershed Using HSPF and SWAT," Illinois Department of Natural Resources and the Illinois State Geological Survey, Illinois State Water Survey Contract Report 2004-08, pp.1-24.
20. Jon M.C. (2008). “Decision rationale total maximum daily loads recreation use (bacteriological) impairments James River-lower piedmont region watershed Goochland and Fluvanna Counties, Virginia”, U.S. EPA, Region III.
21. Knisel, W. G.(1980).“CREAMS, a field scale model for chemicals, runoff and erosion from agricultural management systems,”USDA Conservation Research Rept. No. 26.
22. Luo, Y., Ficklin, D., Liu, X. and Zhang, M. (2013). Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Science of The Total Environment, 450-451, pp.72-82.
23. Lamba, J., Thompson, A., Karthikeyan, K., Panuska, J. and Good, L. (2016). Effect of best management practice implementation on sediment and phosphorus load reductions at subwatershed and watershed scale using SWAT model. International Journal of Sediment Research, 31(4), pp.386-394.
24. Leonard, R. A., Knisel, W. G. and Still, D. A.(1987).“Groundwater loading effects on agricultural management systems,”ASAE, pp. 1403-1428.
25. Lane, L.J. 1983. Chapter 19: Transmission Losses. p.19-1–19-21. In Soil Conservation Service. National engineering handbook, section 4:hydrology. U.S. Government Printing Office, Washington, D.C.
26. Mishra, A. and Kar, S. (2012). Modeling Hydrologic Processes and NPS Pollution in a Small Watershed in Subhumid Subtropics Using SWAT. Journal of Hydrologic Engineering, 17(3), pp.445-454.
27. Malagó, A., Bouraoui, F., Vigiak, O., Grizzetti, B. and Pastori, M. (2017). Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Science of The Total Environment, 603-604, pp.196-218.
28. M. Kang, S. Park, J. Lee and K. Yoo, "Applying SWAT for TMDL programs to a small watershed containing rice paddy fields," Agricultural Water Management, vol. 79, no. 1, 2006, pp. 72-92.
29. Maurer, E.P., 2007: Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California under two emissions scenarios, Climatic Change, 82, 10.1007/s10584-006-9180-9.
30. Mearns, L. O., Rosenzweig, C., & Goldberg, R. (1997). Mean and variance change in climate scenarios: methods, agricultural applications, and measures of uncertainty. Climatic Change, 35(4), 367-396.
31. Monteith, J.L. 1965. Evaporation and the environment. p. 205-234. In The state and movement of water in living organisms. 19th Symposia of the Society for Experimental Biology. Cambridge Univ. Press, London, U.K.
32. Narsimlu, B., Gosain, A. K., & Chahar, B. R. (2013). Assessment of future climate change impacts on water resources of upper sind river basin, India using SWAT model. Water Resources Management, 27(10), 3647–3662.
33. Park, J., Yu, Y., Hwang, S., Kim, C. and Kim, S. (2014). SWAT modeling of best management practices for Chungju dam watershed in South Korea under future climate change scenarios. Paddy and Water Environment, 12(S1), pp.65-75.
34. Priestley, C.H.B. and R.J. Taylor. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather. Rev.100:81-92.
35. Racsko, P., Szeidl, L., & Semenov, M. (1991). A serial approach to local stochastic weather models. Ecological modelling, 57(1), 27-41.
36. Strehmel, A., Schmalz, B. and Fohrer, N. (2016). Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China. Environmental Management, 58(5), pp.906-921.
37. Shin, H.-J., Park, M.-J., Hwang, S.-J., Park, J.-Y., & Kim, S.-J. (2014). Hydrologic impact of climate change with adaptation of vegetation community in a forest-dominant watershed. Paddy and Water Environment, 12(S1), 51–63.
38. Semenov, M. A., & Barrow, E. M. (1997). Use of a stochastic weather generator in the development of climate change scenarios. Climatic change,35(4), 397-414.
39. SCS (Soil Conservation Service)(1972). Section 4: Hydrology In National Engineering Handbook, Soil Conservation Service, Washington, D.C..
40. S. L. Neitsch, J. G. Arnold, J. R. Kiniry and J. R. Williams, Soil and Water Assessment Tool Theoretical Documentation Version 2009, Texas: grassland, soil and water research laboratory, agricultural research service, 2011.
41. Uniyal, B., Jha, M. K., & Verma, A. K. (2015). Assessing climate change impact on water balance components of a river basin using SWAT model. Water Resources Management, 29(13), 4767–4785.
42. Verma, S., Bhattarai, R., Bosch, N., Cooke, R., Kalita, P. and Markus, M. (2015). Climate Change Impacts on Flow, Sediment and Nutrient Export in a Great Lakes Watershed Using SWAT. CLEAN - Soil, Air, Water, 43(11), pp.1464-1474.
43. Woznicki, S. and Nejadhashemi, A. (2011). Sensitivity Analysis of Best Management Practices Under Climate Change Scenarios1. JAWRA Journal of the American Water Resources Association, 48(1), pp.90-112.
44. Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophysical Research-Atmospheres 107(D20), 4429.
45. Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Change, 62, 189–216.
46. Wilks, D. S. (1992). Adapting stochastic weather generation algorithms for climate change studies. Climatic change, 22(1), 67-84.
47. Williams, J. R., Jones, C. A. and Dyke, P. T. (1984).“A modeling approach to determining the relationship between erosion and soil productivity,” ASAE, pp. 129-144.
48. Williams, J.R. 1975. Sediment-yield prediction with universal equation using runoff energy factor. p. 244-252. In Present and prospective technology for predicting sediment yield and sources: Proceedings of the sedimentyield workshop, USDA Sedimentation Lab., Oxford, MS, November 28-30, 1972. ARS-S-40.
49. Zhang, X. and Zhang, M. (2011). Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff. Science of The Total Environment, 409(10), pp.1949-1958.
50. Zhang, X., Xu, Y.-P., & Fu, G. (2014). Uncertainties in SWAT extreme flow simulation under climate change. Journal of Hydrology, 515, 205–222.
51. Zhang, Y., You, Q., Chen, C., & Ge, J. (2016). Impacts of climate change on streamflows under RCP scenarios: A case study in Xin river basin, china. Atmospheric Research, 178-179, 521–534.
52. 朱吟晨(2018)。極端氣候已成為人類存亡的嚴重威脅。檢自https://tccip.ncdr.nat.gov.tw/v2/knowledge_cc_news_view.aspx?kid=20180122095451 (Jan.30, 2018)
53. 許晃雄、吳明進、楊秋忠、林正鈁、賴進貴、李河清(2000)。台灣環境變遷與全球氣候變遷衝擊之評析-總計畫,行政院國家科學委員會專題研究計畫成果總報告(編號:NSC-89-2621-Z-110-020)。
54. 陳韻如、劉俊志、蘇元風、陳永明、葉克家(2013)。氣候變遷情境對流量衝擊之不確定性評估。101年度「行政院災害防救應用科技方案」暨國家災害防救科技中心成果聯合發表會,臺北市國立臺灣科技大學。
55. 謝佳穎、陳韻如、劉俊志、陳永明、朱容練、黃柏誠(2012)。應用LARS-WG天氣衍生器評估台灣氣候變遷衝擊與案例分析。2012台灣災害管理研討會,新北市大坪林聯合開發大樓。
56. 陳韻如、劉俊志、蘇元風、陳永明、葉克家(2013)。氣候變遷四大流域流量模擬與不確定性分析。101年度「行政院災害防救應用科技方案」暨國家災害防救科技中心成果聯合發表會,臺北市國立臺灣科技大學。
57. 童慶彬、林嘉佑(2008)。氣候變遷的挑戰與因應,科學發展月刊,424,28-33。
58. 鍾寧心,氣候變遷對營養鹽輸出量衝擊之早期預警指標—以翡翠水庫集水區為例,碩士論文,國立台灣大學工學院環境工程學研究所,臺北,2010。
59. 林子平、連宛渝、林裕彬、江莉琦(2016)。土地及氣候變遷情境對流量之影響,臺灣水利,64(3),52-65。
60. 陳正達、林修立(2015)。統計降尺度資料產製與技術研發,台灣氣候變遷推估與資訊平台建置(2/3)年度進度報告(編號:MOST 103-2621-M-865-001)。
61. 陳正達(2014)。台灣氣候變遷推估研究,大氣科學,第四十二期,第三號,2014,第207-251頁。
62. 林以淳、劉俊志(2015)。因應農糧與公衛領域研究需求衍未來氣候情境下之日氣象資料,台灣氣候變遷推估與資訊平台建置(2/3)年度進度報告(編號:MOST 103-2621-M-865-001)。
63. 謝平成、楊山慶,植生渠道之水理實驗,水土保持學報,第三十九卷,第四期,2007,第371-385頁。
64. 張永勇,氣候變化對淮河流域水量水質影響分析,自然資源學報,第三十二卷,第一期,2017,第114-126頁。
65. 交通部中央氣象局,氣象資料開放平台(2013)。檢自 http://opendata.cwb.gov.tw/index。
66. 行政院農業委員會農糧署,作物施肥手冊。檢自http://www.afa.gov.tw/publish_tree.asp?catid=70。
67. 吳政緯,翡翠水庫營養鹽之總最大日負荷規劃,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2010。
68. 林育丞,翡翠水庫集水區非點源汙染削減效率評估與不確定性分析,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2012。
69. 施恆益,應用概似不確定性估計(GLUE)於集水區營養鹽總最大日負荷規劃,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2013。
70. 陳立宗,翡翠水庫集水區水文暨水質模擬,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2009。
71. 黃宇齊,翡翠水庫及水庫集水區水文暨水質模擬與其不確定性,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2010。
72. 臺北翡翠水庫管理局,翡翠水庫操作年報,1995~2014。
73. 行政院環境保護署,降雨逕流非點源汙染最佳管理技術(BMPs)手冊,2013。
74. 新北市坪林區公所,新北市坪林區區政統計年報,2015。
75. 溫清光、范正成、張尊國、鄭克聲、林鎮洋(2000),「流域集水區非點源最佳管理措施之研究」,行政院環保署委託,國立成功大學環工系、國立臺灣大學農業工程系、國立臺北科技大學土木工程系執行。
76. 柯強、趙靜、王少平、鄭文笛、尹大強(2009),「最大日負荷總量(TMDL)技術在農業面源污染控制與管理中的應用與發展趨勢」,生態與農村環境學報,第二十五卷,第一期,第85-91頁。
77. 張尊國、張文亮、鄭克聲、林裕彬、徐貴新、魏敏裕(2006),翡翠水庫水源保護區污染源調查計畫,行政院環境保護署委託。
78. 范麗麗、沈珍瑤、劉瑞民、宮永偉,「基於 SWAT 模型的大寧河流域非點源污染空間特性研究」,水土保持通報,第二十八卷,第四期,2008,第133-137頁。
79. 方世榮(2001),統計學導論,華泰文化事業股份有限公司,臺北市,第547頁。
80. 行政院環境保護署(2017),地面水體分類及水質標準,檢自https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015490。
論文全文使用權限:同意授權於2020-08-22起公開