You are here:Home > Theses > Detail
Title:回收半導體鋁蝕刻製程之負pH値廢酸中 有價物質之研究 [以論文名稱查詢館藏系統]
Translated Title:Recovery of Valuable Substances in Negative pH Wastewater from Semiconductor Etching Processes [以論文名稱查詢館藏系統]
School:臺北科技大學
College:工程學院
Department:環境工程與管理研究所
Year:106
Semester:第二學期
Publish Year:107
Creator:蔡柏晟
Translated Creator:Bo-Cheng Tsai
Student ID:105608003
Degree:碩士
Language:中文
Defense Date:2018/07/30
Pages:97
Advisor:陳孝行
Translated Advisor:Shiao-Shing Chen
Committee:李奇旺;徐宏德
Translated Committee:Chi- Wang Lee;Hung-Te Hsu
Keyword:半導體磷酸氫氟酸有價產物Aqion
Trandlated Keyword:Semiconductorphosphoric acidhydrofluoric acidvaluable productsAqion
Abstract:半導體之鋁蝕刻製程排放約680-1100 g/L的磷酸,100-200 g/L的醋酸,30-100 g/L的硝酸和80-200g/L的氫氟酸。由於磷會造成水體優養化,但為生物的必要元素;高濃度的氟對生物有毒性影響,但氟為人體必要微量元素之一,微量的氟有促進兒童生長發育和防齲齒的作用,故研究目的為以減少磷、氟排放至水體,回收磷與氟作為有價值產物,是循環經濟重要的課題之一。本研究以化學結晶法回收負pH值廢酸中的磷酸與氫氟酸,分別作為鳥糞石、磷酸二氫銨、氟化鎂、冰晶石,主要以回收氨水、六水氯化鎂、硝酸鋁作為沉澱劑。
本研究之廢酸含有972g/L(10.2M)的磷酸與68g/L(3.64M)的氫氟酸,本研究分為兩個步驟回收氟與磷,首先在酸性條件下回收氟,探討莫爾比(Mg/F、Al/F)、pH(4-5.5)對氟回收效率之影響與產物的純度;在鹼性條件下回收磷,探討Mg/P莫爾比、pH對磷回收效率之影響與產物的純度。研究結果與Aqion水化學軟體的預測結果一致,在回收氟方面,以冰晶石、氟化鎂型態回收氟,均受磷酸鹽嚴重干擾,產生磷酸鋁與三水磷酸氫鎂,使得其對氟的回收效率差;以鳥糞石型態回收磷,當P/Mg的莫爾比為1: 2時,於pH8時,磷酸鹽的回收率可達99.99%,剩餘的磷酸鹽濃度為3mg/L,達到放流水標準,但是加入過多的氯化鎂,氯離子會與氨根反應成氯化銨,將影響鳥糞石的純度。當P/Mg的莫爾比為1: 0.5時,於pH為9,鳥糞石的純度達95%。以磷酸二氫銨型態回收磷,在pH9時,其回收效率為55%,純度為96%。產物透過XRD、SEM、EDX,以及化學分析證實其產物分別為鳥糞石與磷酸二氫銨,證實回收鋁蝕刻製程之負pH値廢酸中的有價物質是可行的。
Translated Abstract:Phosphoric acid and hydrofluoric acid are typically present in larger amount in acidic wastewater etched from semiconductors, leading to short and long-term environmental problems. However, they are essential for all living organisms as it represents the energy currency for organisms at cell level. The objective of this paper is to recover phosphoric acid and hydrofluoric acid as struvite(NH4MgPO4·6H2O), ammonium dihydrogen phosphate (NH4H2PO4), cryolite(Na3AlF6), magnesium fluoride(MgF2) from negative pH wastewater. Purity of products are affected by several factors such as pH, molar ratio and presence of other interfering ions. This study, the acidic wastewater contains phosphoric acid (972.3g/L H3PO4), nitric acid (163.85g/L HNO3) and acetic acid (112g/L HAc) along with hydrofluoric acid (68g/L HF). The results obtained are same as prediction of Aqion software , on the recovery of fluorine, the cryolite and magnesium fluoride are severely interfered by phosphate, thus aluminum phosphate and newberyite(MgHPO4·3H2O) are produced, and therefore, recovery of fluorine was poor. The phosphate was recovered as struvite, when the P/Mg of the molar ratio was 1/2, the recovery of phosphate was found to be 99.99% at pH 8. When the P/Mg molar ratio was 1/0.5, the struvite purity was analysed to be 95% at pH 9. when the phosphate was recovered as ammonium dihydrogen phosphate, the recovery was found be 55%, and the purity was analysed to be 96% at pH 9. The products were confirmed by XRD, SEM, characterization.
Table of Content:摘 要 i
Abstract iii
誌 謝 iv
目 錄 v
表目錄 viii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容 3
第二章 文獻回顧 5
2.1 半導體業蝕刻廢液之特性及現行處理技術 5
2.1.1 TFT–LCD製程簡介 5
2.1.2 晶圓蝕刻技術之簡介 9
2.1.3 晶圓濕式蝕刻之原理 10
2.1.4 晶圓濕式蝕刻中常用的濕式蝕刻製程 10
2.1.5 TFT–LCD製程產生廢液之特性 11
2.2 磷 12
2.2.1 磷的重要性 12
2.2.2 磷對環境造成的影響 13
2.3 磷的回收技術 14
2.3.1 吸附法 14
2.3.2 沉澱法 14
2.3.3 生物法 15
2.3.4 結晶法 16
2.3.5 結晶法與沉澱法之比較 17
2.4 磷酸銨鎂結晶法(MAP) 17
2.4.1 MAP結晶法原理 17
2.4.2 鳥糞石(Struvite)性質 18
2.4.3 鳥糞石(Struvite)結晶型態 18
2.5 磷酸二氫銨 19
2.6 結晶技術影響因子 19
2.6.1 其它離子沉澱影響 19
2.6.2 共同沉澱影響 20
2.6.3 pH值之影響 21
2.6.4 莫耳比之影響 21
2.6.5 反應時間與擔體之影響 22
2.7 以結晶法回收氟離子之研究 22
2.7.1 冰晶石 23
2.7.2 氟化鎂 23
2.8 Aqion水化學分析軟體 24
2.9 文獻回顧 26
第三章 材料與方法 29
3.1 材料 29
3.1.1 廢水來源與性質 29
3.1.2 沉澱物 30
3.1.3 試劑 31
3.2 設備 32
3.2.1 實驗設備 32
3.2.2 分析方法與分析設備 33
3.3 研究方法與原理 40
3.3.1 研究方法 40
3.3.2 鳥糞石之純度計算 43
3.3.3 實驗步驟 44
第四章 結果與討論 46
4.1 Aqion軟體模擬莫爾比與pH值影響反應生成之物種 46
4.1.1 模擬冰晶石(Na3AlF6)型態回收氟 46
4.1.2 模擬氟化鎂(MgF2)型態回收氟 52
4.1.3 模擬鳥糞石型態回收磷 59
4.2 以實驗操作莫爾比與pH值影響反應生成之物種 66
4.2.1 冰晶石(Na3AlF6)型態回收氟 66
4.2.2 氟化鎂型態回收氟 69
4.2.3 鳥糞石型態回收磷 72
4.2.4 磷酸二氫銨型態回收磷 75
4.3 產物分析 76
4.3.1 XRD分析產物 76
4.3.2 SEM與EDX分析產物 80
第五章 結論與建議 86
5.1 結論 86
5.2 建議 87
參考文獻 88
Reference:1. 蘇嘉維,IEK:產值增幅 台灣半導體 明年冠全球,臺北:工商時報,2017。
2. Chen, F., X. Wang, W. Liu, B. Liang, H. Yue, and C. Li, "Selective extraction of nitric and acetic acids from etching waste acid using N235 and MIBK mixtures," Separation and Purification Technology, 2016. 169: p. 50-58.
3. Seviour, R.J., T. Mino, and M. Onuki, "The microbiology of biological phosphorus removal in activated sludge systems," FEMS Microbiology Reviews, 2003. 27(1): p. 99-127.
4. Simpson, R.J., A. Oberson, R.A. Culvenor, M.H. Ryan, E.J. Veneklaas, H. Lambers, J.P. Lynch, P.R. Ryan, E. Delhaize, F.A. Smith, S.E. Smith, P.R. Harvey, and A.E. Richardson, "Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems," Plant and Soil, 2011. 349(1-2): p. 89-120.
5. Wyngaard, N., M.L. Cabrera, K.A. Jarosch, and E.K. Bünemann, "Phosphorus in the coarse soil fraction is related to soil organic phosphorus mineralization measured by isotopic dilution," Soil Biology and Biochemistry, 2016. 96: p. 107-118.
6. Abelson, P.H., "A potential phosphate crisis," Science, 283 (1999), 1999: p. 2015.
7. 王淑姿,空氣污染氟化物為害植物之分佈及指標植物之硏究,碩士論文,國立台灣大學植物病理學系,1999。
8. 蔡隆九,「氟污染及其控制方法」,包钢科技,第27卷,第一期,2001,第56-60頁。
9. 许光泉,「中国地下水氟污染的现状及研究进展」,中国环境科学学会学术年会论文集,北京,2013。
10. 郭振华,「氟污染的危害及含氟废水处理技术研究进展」,金属矿山,第430卷,第1期,第152-155頁。
11. Kim, J.-Y., C.-H. Shin, H. Choi, and W. Bae, "Recovery of phosphoric acid from mixed waste acids of semiconductor industry by diffusion dialysis and vacuum distillation," Separation and Purification Technology, 2012. 90: p. 64-68.
12. Duan, X., C. Wang, T. Wang, X. Xie, X. Zhou, and Y. Ye, "A polysulfone-based anion exchange membrane for phosphoric acid concentration and purification by electro-electrodialysis," Journal of Membrane Science, 2018. 552: p. 86-94.
13. Dang, J., L. Zhao, J. Zhang, J. Liu, and J. Wang, "Imidazole microcapsules toward enhanced phosphoric acid loading of polymer electrolyte membrane for anhydrous proton conduction," Journal of Membrane Science, 2018. 545: p. 88-98.
14. Kayar, K.E. and V. Perrot, "Metallic Heaters for Phosphoric Acid Evaporation," Procedia Engineering, 2014. 83: p. 291-301.
15. Tansel, B., G. Lunn, and O. Monje, "Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions," Chemosphere, 2018. 194: p. 504-514.
16. Golubenko, D.V., Y.A. Karavanova, S.S. Melnikov, A.R. Achoh, G. Pourcelly, and A.B. Yaroslavtsev, "An approach to increase the permselectivity and mono-valent ion selectivity of cation-exchange membranes by introduction of amorphous zirconium phosphate nanoparticles," Journal of Membrane Science, 2018. 563: p. 777-784.
17. Chen, Q., X. Ma, X. Zhang, Y. Liu, and M. Yu, "Extraction of rare earth ions from phosphate leach solution using emulsion liquid membrane in concentrated nitric acid medium," Journal of Rare Earths, 2018.
18. Zhuang, J.-X., Q. Chen, S. Wang, W.-M. Zhang, W.-G. Song, L.-J. Wan, K.-S. Ma, and C.-N. Zhang, "Zero discharge process for foil industry waste acid reclamation: Coupling of diffusion dialysis and electrodialysis with bipolar membranes," Journal of Membrane Science, 2013. 432: p. 90-96.
19. 陳啟明,NF薄膜程序應用於自來水淨水工程之探討,碩士論文,國立屏東科技大學食品科學系,屏東,2104。
20. Wang, J., X. Ye, Z. Zhang, Z.-L. Ye, and S. Chen, "Selection of cost-effective magnesium sources for fluidized struvite crystallization," Journal of Environmental Sciences, 2018. 70: p. 144-153.
21. Karak, T., I. Sonar, J.R. Nath, R.K. Paul, S. Das, R.K. Boruah, A.K. Dutta, and K. Das, "Struvite for composting of agricultural wastes with termite mound: Utilizing the unutilized," Bioresource Technology, 2015. 187: p. 49-59.
22. Taddeo, R., M. Honkanen, K. Kolppo, and R. Lepistö, "Nutrient management via struvite precipitation and recovery from various agroindustrial wastewaters: Process feasibility and struvite quality," Journal of Environmental Management, 2018. 212: p. 433-439.
23. Zeng, F., Q. Zhao, W. Jin, Y. Liu, K. Wang, and D.-J. Lee, "Struvite precipitation from anaerobic sludge supernatant and mixed fresh/stale human urine," Chemical Engineering Journal, 2018. 344: p. 254-261.
24. 王煊丞,多效磷鹽乾粉成分鑑定方法,碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,高雄,2015。
25. 刘玉强,「应重视开发磷肥工业副产冰晶石」,磷肥与复肥,第六期,1997。
26. Tseng, F.-M., Y.-J. Chiu, and J.-S. Chen, "Measuring business performance in the high-tech manufacturing industry: A case study of Taiwans large-sized TFT-LCD panel companies," Omega, 2009. 37(3): p. 686-697.
27. Mahan, J.E., "Physical vapor deposition of thin films," Physical Vapor Deposition of Thin Films, 2000: p. 336.
28. Crawley, J.A. and V.J. Saywell, "Chemical vapor deposition," Patents, 1999.
29. 洪大偉,鋁釹與鉬鈮雙層閘極結構在蝕刻機制之邊緣輪廓及傾斜角研究,碩士論文,國立台北科技大學化學工程研究所,高雄,2006。
30. Pearton, S., C. Abernathy, F. Ren, J. Lothian, P. Wisk, and A. Katz, "Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1993. 11(4): p. 1772-1775.
31. 張勁燕,半導體製程設備,臺北:五南圖書出版股份有限公司,2005。
32. 黃欣栩,「水汙染防治法修訂對廢水處理之影響及處理技術探討」,科學工業園區管理局,台北,2012,第10頁。
33. 陳建穎,鋁蝕刻廢磷酸之回收與純化可行性研究,碩士論文,義守大學生物技術與化學工程研究所,高雄,2011。
34. Lin, K.-L., H.-S. Shiu, J.-L. Shie, T.-W. Cheng, and C.-L. Hwang, Effect of composition on characteristics of thin film transistor liquid crystal display (TFT-LCD) waste glass-metakaolin-based geopolymers. Construction and Building Materials, 2012. 36: p. 501-507.
35. 中華映管股份有限公司,「中華映管股份有限公司申請龍潭工業園區報編計畫」,因應對策暨環境影響差異分析報告,桃園,2009,第32-35頁。
36. Monballiu, A., E. Desmidt, K. Ghyselbrecht, and B. Meesschaert, "Phosphate recovery as hydroxyapatite from nitrified UASB effluent at neutral pH in a CSTR," Journal of Environmental Chemical Engineering, 2018. 6(4): p. 4413-4422.
37. Wilfert, P., A.I. Dugulan, K. Goubitz, L. Korving, G.J. Witkamp, and M.C.M. Van Loosdrecht, "Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery," Water Research, 2018. 144: p. 312-321.
38. Ye, Y., H.H. Ngo, W. Guo, Y. Liu, J. Li, Y. Liu, X. Zhang, and H. Jia," Insight into chemical phosphate recovery from municipal wastewater," Science of The Total Environment, 2017. 576: p. 159-171.
39. Boeykens, S.P., M.N. Piol, L. Samudio Legal, A.B. Saralegui, and C. Vázquez, "Eutrophication decrease: Phosphate adsorption processes in presence of nitrates," Journal of Environmental Management, 2017. 203: p. 888-895.
40. Gypser, S., F. Hirsch, A.M. Schleicher, and D. Freese, "Impact of crystalline and amorphous iron- and aluminum hydroxides on mechanisms of phosphate adsorption and desorption," Journal of Environmental Sciences, 2018. 70: p. 175-189.
41. Yin, Q., H. Ren, R. Wang, and Z. Zhao, "Evaluation of nitrate and phosphate adsorption on Al-modified biochar: Influence of Al content," Science of The Total Environment, 2018. 631-632: p. 895-903.
42. Liu, T., J. Feng, Y. Wan, S. Zheng, and L. Yang, "ZrO2 nanoparticles confined in metal organic frameworks for highly effective adsorption of phosphate," Chemosphere, 2018. 210: p. 907-916.
43. Wang, C.C., X.D. Hao, G.S. Guo, and M.C.M. van Loosdrecht, "Formation of pure struvite at neutral pH by electrochemical deposition," Chemical Engineering Journal, 2010. 159(1): p. 280-283.
44. Liu, J., X. Cheng, X. Qi, N. Li, J. Tian, B. Qiu, K. Xu, and D. Qu, "Recovery of phosphate from aqueous solutions via vivianite crystallization: Thermodynamics and influence of pH," Chemical Engineering Journal, 2018. 349: p. 37-46.
45. Marshall, J.A., B.J. Morton, R. Muhlack, D. Chittleborough, and C.W. Kwong, "Recovery of phosphate from calcium-containing aqueous solution resulting from biochar-induced calcium phosphate precipitation," Journal of Cleaner Production, 2017. 165: p. 27-35.
46. Vardanyan, A., N. Kafa, V. Konstantinidis, S.G. Shin, and I. Vyrides, "Phosphorus dissolution from dewatered anaerobic sludge: Effect of pHs, microorganisms, and sequential extraction," Bioresource Technology, 2018. 249: p. 464-472.
47. Ye, Z., Y. Shen, X. Ye, Z. Zhang, S. Chen, and J. Shi, "Phosphorus recovery from wastewater by struvite crystallization: Property of aggregates," Journal of Environmental Sciences (China), 2014. 26(5): p. 991-1000.
48. Rahman, M.M., M.A.M. Salleh, U. Rashid, A. Ahsan, M.M. Hossain, and C.S. Ra, "Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review," Arabian Journal of Chemistry, 2014. 7(1): p. 139-155.
49. Mehta, C.M. and D.J. Batstone, "Nucleation and growth kinetics of struvite crystallization," Water Research, 2013. 47(8): p. 2890-2900.
50. Agrawal, S., J.S. Guest, and R.D. Cusick, "Elucidating the impacts of initial supersaturation and seed crystal loading on struvite precipitation kinetics, fines production, and crystal growth," Water Research, 2018. 132: p. 252-259.
51. Ali, M.I. and P.A. Schneider, "An approach of estimating struvite growth kinetic incorporating thermodynamic and solution chemistry, kinetic and process description," Chemical Engineering Science, 2008. 63(13): p. 3514-3525.
52. Prywer, J., A. Torzewska, and T. Płociński, "Unique surface and internal structure of struvite crystals formed by Proteus mirabilis," Urological Research, 2012. 40(6): p. 699-707.
53. Huang, H., J. Liu, P. Zhang, D. Zhang, and F. Gao, "Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation," Chemical Engineering Journal, 2017. 307: p. 696-706.
54. Shih, Y.-J., R.R.M. Abarca, M.D.G. de Luna, Y.-H. Huang, and M.-C. Lu, "Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions," Chemosphere, 2017. 173: p. 466-473.
55. Perwitasari, D.S., S. Muryanto, J. Jamari, and A.P. Bayuseno, "Kinetics and morphology analysis of struvite precipitated from aqueous solution under the influence of heavy metals: Cu2+, Pb2+, Zn2+," Journal of Environmental Chemical Engineering, 2018. 6(1): p. 37-43.
56. Ronteltap, M., M. Maurer, and W. Gujer, "Struvite precipitation thermodynamics in source-separated urine," Water Research, 2007. 41(5): p. 977-984.
57. Bhuiyan, M.I.H., D.S. Mavinic, and F.A. Koch, "Thermal decomposition of struvite and its phase transition," Chemosphere, 2008. 70(8): p. 1347-1356.
58. Chen, X., H. Kong, D. Wu, X. Wang, and Y. Lin, "Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal," Journal of Environmental Sciences, 2009. 21(5): p. 575-580.
59. Warmadewanthi and J.C. Liu, "Recovery of phosphate and ammonium as struvite from semiconductor wastewater," Separation and Purification Technology, 2009. 64(3): p. 368-373.
60. Booker, N.A., A.J. Priestley, and I.H. Fraser, "Struvite Formation in Wastewater Treatment Plants: Opportunities for Nutrient Recovery," Environmental Technology, 1999. 20(7): p. 777-782.
61. Chuang, T.-C., J. Huang, and J. C. Liu, "Treatment of Semiconductor Wastewater by Dissolved Air Flotation," Journal of Environmental Engineering, 2002. 128: p. 974-980.
62. F. Chang, M. and J. C. Liu, "Precipitation Removal of Fluoride from Semiconductor Wastewater," Journal of Environmental Engineering, 2007, 133.
63. Jiang, K., K. Zhou, Y. Yang, and H. Du, "A pilot-scale study of cryolite precipitation from high fluoride-containing wastewater in a reaction-separation integrated reactor," Journal of Environmental Sciences, 2013. 25(7): p. 1331-1337.
64. Chen, J.-Y., C.-W. Lin, P.-H. Lin, C.-W. Li, Y.-M. Liang, J.-C. Liu, and S.-S. Chen, "Fluoride recovery from spent fluoride etching solution through crystallization of Na3AlF6 (synthetic cryolite)," Separation and Purification Technology, 2014. 137: p. 53-58.
65. 張郁琪,去除合成氟廢水中氟化物以合成冰晶石之研究,碩士論文,國立雲林科技大學環境與安全衛生工程系,雲林,2017。
66. 施勳章,廢鋁熔煉飛灰資源化為冰晶石之研究,碩士論文,國立高雄應用科技大學化學工程與材料工程系,高雄,2011。
67. Foy, L. and P.A. Madden, "Ionic Motion in Crystalline Cryolite," The Journal of Physical Chemistry B, 2006. 110(31): p. 15302-15311.
68. Leblanc, M., V. Maisonneuve, and A. Tressaud, "Crystal Chemistry and Selected Physical Properties of Inorganic Fluorides and Oxide-Fluorides," Chemical Reviews, 2015. 115(2): p. 1191-1254.
69. Parkhurst, D.L. and C.A.J. Appelo, Users guide to PHREEQC (Version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, in Water-Resources Investigations Report. 1999.
70. Stumm, W. and J.J. Morgan, "Aquatic chemistry: chemical equilibria and rates in natural waters," 2012, 126: p. 253-259.
71. Huang, H., J. Yang, and D. Li, "Recovery and removal of ammonia–nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product," Bioresource Technology, 2014. 172: p. 253-259.
72. Jia, G., H. Zhang, J. Krampe, T. Muster, B. Gao, N. Zhu, and B. Jin, "Applying a chemical equilibrium model for optimizing struvite precipitation for ammonium recovery from anaerobic digester effluent," Journal of Cleaner Production, 2017. 147: p. 297-305.
73. Mucci, A., "The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure," American Journal of Science, 1983. 283(7): p. 780-799.
74. Jadhav, S.V., C.R. Gadipelly, K.V. Marathe, and V.K. Rathod, "Treatment of fluoride concentrates from membrane unit using salt solutions," Journal of Water Process Engineering, 2014. 2: p. 31-36.
75. Wang, Z. and Y. Guo, "Corrosion resistance and adhesion of poly (L-lactic acid)/MgF2 composite coating on AZ31 magnesium alloy for biomedical application," Russian Journal of Non-Ferrous Metals, 2016. 57(4): p. 381-388.
76. Griffin, P., "The impact of affirmative action on labor demand: A test of some implications of the Le Chatelier principle," The Review of Economics and Statistics, 1992: p. 251-260.
77. 鄭幸雄,石化廢水硝化脫硝程序之功能評估與功能提昇(II),碩士論文,國立成功大學環境工程研究所,高雄,1995。
78. Singer, A.U. and J.D. Forman‐Kay, "pH Titration studies of an SH2 domain‐phosphopeptide complex: Unusual histidine and phosphate pKa values," Protein science, 1997. 6(9): p. 1910-1919.
79. Suzuki, I., U. Dular, and S. Kwok, "Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts," Journal of Bacteriology, 1974. 120(1): p. 556-558.
80. Su, C.-C., L.D. Dulfo, M.L.P. Dalida, and M.-C. Lu, "Magnesium phosphate crystallization in a fluidized-bed reactor: Effects of pH, Mg: P molar ratio and seed," Separation and Purification Technology, 2014. 125: p. 90-96.
81. 連晨宇,利用金屬茂觸媒催化乙烯聚合與乙烯/苯乙烯共聚合反應之研究,碩士論文,東海大學化學工程與材料工程學系,台中,2011。
82. Amirthalingam, J., J. Murugan, B. Neelakantaprasad, and D.G. Rajarajan, "FTIR, XRD, SEM, TGA Investigations of Ammonium Dihydrogen Phosphate (ADP) Single Crystal," International Journal of Computer Applications, 2012, 53: p. 975-8887.
Paper Authorization:ApprovelAt2021-08-20Open