現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以導波技術檢測鋼筋混凝土握裹介面傷損之初探 [以論文名稱查詢館藏系統]
論文英文名稱:Utilization of Guided Wave to Detect the Interfacial Bonding due to Degradation of Reinforced Concrete [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:楊佳嘉
英文姓名:Chia-Chia Yang
研究生學號:105428068
學位類別:碩士
語文別:中文
口試日期:2018/07/25
論文頁數:141
指導教授中文名:陳立憲;林俊宏
指導教授英文名:Li-Hsien Chen;Chun-Hung Lin
口試委員中文名:陳堯中;王天志;林俊宏;陳立憲
中文關鍵詞:鋼筋混凝土結構傷損判識非破壞檢測導波量測多頻道表面波分析
英文關鍵詞:Reinforced ConcreteDetec the Degradation of StructureNon-Destructive TestingGuided WaveMulti-channel Analysis of Surface Wave
論文中文摘要:鋼筋混凝土結構因受高溫或化學環境侵擾後,首當其衝之混凝土保護層表面產生裂隙,外界之濕氣或氯化物將直接侵入與鋼筋接觸,造成鋼筋快速腐蝕,當裂縫的寬度愈大時,腐蝕將會加速,進而影響混凝土與鋼筋互制之握裹能力。傳統針對其狀況之非破壞檢測,均為混凝土傷損之判釋,而較少對其內部受損之鋼筋與混凝土介面作探討,故本研究希冀建立鋼筋混凝土握裹介面 (延-脆材料介面) 之傷損評估技術。研究上應用導波量測於受損後之鋼筋混凝土,為握裹傷損判識/判釋技術,導入材料介面缺陷之概念 (Conceptual Model),由簡入繁、逐一探討鋼筋混凝土介面之表面波傳行為及特徵,作為鋼筋混凝土握裹介面傷損評估技術之核心指標。
實驗以設計強度420 kgf/cm2之鋼筋混凝土為主體材料製作長方試體,其鋼筋配置以保護層厚度:1.5、4 cm、鋼筋種類 (D19竹節筋,其直徑為1.91 cm;304F光面筋,其直徑為2.1 cm)、正規化厚徑比 (c/db,保護層厚度除以鋼筋直徑)、傷損長度 (30 cm) 與厚度 (0.3 cm) 為實驗變數。並以塑膠氣泡墊包覆鋼筋模擬其介面握裹完全開裂傷損 (Opening),作為導波量測傷損技術之初步研探。量測方法以多頻道表面波震測法為之,並搭配寬頻接收器及敲擊鋼珠施作試驗。
試驗結果於定性判釋上:無鋼筋面影響之定性特徵頻譜能量為單一尖峰,而頻散影像上所對應相位波速範圍一致;在有鋼筋影響下,頻譜能量顯現為雙峰趨勢,且隨著厚徑比 (c/db) 減少而能量增加,於頻散影像上,於不同厚徑比時,均顯現兩處高模態導波頻散特徵;在擬傷損影響下之定性特徵,頻譜能量之厚徑比為2.11時為單一尖峰,近似於無鋼筋面,厚徑比0.79時,受鋼筋影響使第二峰值顯現,但整體雙峰能量減少,於頻散影像上,厚徑比為2.11與0.79時顯示部分鋼筋導波特徵有消散現象,其主能量高頻段波速則有偏低,此情形需再深入探究。在而定量判識上:於二種不同厚徑比條件無損狀況下,有鋼筋之高寬比 (
A_(p,i)/f_(b,i)) 與曲線下圍繞之面積 (Area under the curve, 〖AUC〗_(,i)) 較無鋼筋增加22 %與15 % (厚徑比為2.11)、67 %與135 % (厚徑比為0.79);在擬傷損情形下,高寬比 (A_(p,i)/f_(b,i)) 降低32 % (厚徑比為2.11) 與降低16 % (厚徑比為0.79),而AUC,i在厚徑比為2.11時增加69 %,卻於厚徑比0.79時降低25 %。
故於此初探發現,震測於無鋼筋影面響為已知對照組,而於震測有鋼筋時,可以此指標檢測到鋼筋之存在。當握裹全傷損時,震測訊號呈現出類似較淺的混凝土試體的行為,且最具辨別性的是其頻譜能量的集中且放大的效果,後續試驗將再針對此點進行觀察;因此以多頻道表面波震測於導波量測上之初探判釋與判識,針對探悉鋼筋混凝土之握裹介面傷損評估之探究成果,提出導波訊號特徵在鋼筋有無與傷損時之差異趨勢,即應證本研究之表面波震測之導波量測方法,預測鋼筋存在以及具有預測結構物傷損之潛力,後續研究再逐步朝向實際物、化傷損(如真實火損)引致握裹傷損之探究。
論文英文摘要:Reinforced concrete structure is exposed to open air. High temperature or chemical environment causes the concrete cover to crack. Then, moisture or chloride intrudes into the cracks, directly contacting the reinforcement steel and causing reinforcement steel to corrode. As the crack widens, corrosion accelerates and affects the interfacial bonding between concrete and reinforcement steel. The conventional non-destructive testing (NDT) focuses on the concrete damage without discussing the internal damage occurring to the interfacial bonding between reinforced steel and concrete. Therefore, this study intended to construct a damage assessment technique in order to measure the interfacial bonding between reinforcement steel and concrete (ductile-brittle interface), using guided wave to measure the damages occurring to reinforced concrete in order to detect and explain the bond damages, and at the same time introducing the conceptual model of material-interface-defect as the core index of bond damage assessment technique to examine the wave-propagating behaviors on the surface of reinforced concrete.

Rectangular specimen was produced using reinforced concrete with design strength 420 kgf/cm2 as the primary material for the experiment. The details of the specimen – reinforcement steel cover’s thickness 1.5, 4 cm, type of reinforcement steel, normalized thickness diameter ratio (c/db, cover’s thickness divided by reinforcement steel’s diameter), damage’s length (30 cm) and thickness (0.3 cm) – were used as experimental variables. Reinforcement steel was packed with plastic bubble wrap to simulate the opening of interfacial bonding for the guided wave to detect the damage preliminarily. Multi-channel seismic surface wave was measured. Broadband receiver and steel balls were used together in the experiment.

According to the preliminary detection, seismics serves as the comparison group when it is not under the influence of reinforcement steel. If reinforcement steel is found in seismics, reinforcement steel can be detected. If the bond is totally damaged, seismic signals indicate the specimen in the shallow level of concrete, having a noticeable amplitude of dispersion that is concentrated with an amplified effect, which will be investigated in a later stage. Based on the preliminary detection and explanation of the multi-channel seismic for the surface wave measured by guided wave, this study presented the difference between the guided wave signals with damage and the guided wave signals without damage based on the assessment of the damages occurring to the interfacial bonding in order to demonstrate the guided wave measurement method presented by this study has the potential to detect reinforcement steel and the damages occurring to the structures. In the subsequent researches, the bond damages resulted from actual damage (e.g. real fire) will be investigated.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目錄 vi
表目錄 ix
圖目錄 x
符號對照表 xv
中英對照表 xvii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究範圍與方法 5
1.4 研究架構與內容 6
第二章 文獻回顧 9
2.1 鋼筋混凝土傷損機制 9
2.1.1 混凝土之傷損 9
2.1.2 鋼筋之鏽蝕 11
2.1.3 握裹之損傷 15
2.2 基本波傳原理 16
2.2.1 體波 16
2.2.2 表面波及其頻散現象 18
2.3 導波量測技術於鋼筋混凝土之應用 23
2.3.1 導波特性 23
2.3.2 導波應用之現狀 29
2.4 表面波震測法 35
2.4.1 表面波譜分析法 (SASW) 35
2.4.2 多頻道表面波分析法 (MASW) 42
2.4.3 表面波震測法於鋼筋混凝土應用現況 49
第三章 研究方法 53
3.1 導波量測試驗規劃 53
3.1.1 試驗材料 53
3.1.2 試驗儀設 60
3.1.3 試驗變數、定值與編碼 64
3.1.4 試驗流程 66
3.2 施測配置與分析方法 68
3.2.1 施測配置 68
3.2.2 多頻道波場轉換分析方法 70
第四章 成果分析與討論 75
4.1分析圖表及量化計算說明 76
4.1.1 分析圖表說明 76
4.1.2 頻譜曲線之量化 81
4.2 空間-時間域之判釋與判識 84
4.2.1 波形變化之判釋 84
4.2.2 波速差異之判識 85
4.3 頻率域之判釋與判識 89
4.3.1 頻譜特徵之判釋 89
4.3.2 量化頻譜特徵之判識 92
4.3.3 空間-頻率域影像之判釋 95
4.4 頻散影像圖之差異判釋 99
第五章 結論與建議 107
5.1 結論 107
5.2 建議 109
參考文獻 113
委員意見回應表 119
附錄A、導波量測之試驗紀錄表Testing Sheet 123
附錄B、每組試驗之多頻道表面波波場轉換分析圖 134
附錄C、鋼筋出廠證明書 139
附錄D、保護層厚度變數設計之參考規範處 140
附錄E、接收器規格 141
論文參考文獻:[1]. Abramson, H. N., Plass, H. J., & Ripperger, E. A. (1958). Stress wave propagation in rods and beams. In Advances in applied mechanics (Vol. 5, pp. 111-194). Elsevier.
[2]. Ahmet, S. K., POLAK, M. A., & CASCANTE, G. Application of Surface Waves for Condition Assessment of Cementitious Materials.
[3]. Bartoli, I. (2007). Structural health monitoring by ultrasonic guided waves (Doctoral dissertation, UC San Diego).
[4]. Blot, W. J., & Fraumeni Jr, J. F. (1976). Geographic patterns of lung cancer: industrial correlations. American Journal of Epidemiology, 103(6), 539-550.
[5]. Bowen, B. R. (1992). Damage detection in concrete elements with surface wave measurements (No. AFIT/CI/CIA-92-002D). AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH.
[6]. Bungey, J. H., John, B., Neville, A. M., & PUNDIT, E. (1980). Portable ultrasonic Non-destructive digital indicating tester, operating manual. Information Technology Journal, 1(3), 296-300.
[7]. Chai, H. K., Momoki, S., Aggelis, D. G., & Shiotani, T. (2010). Characterization of Deep Surface-Opening Cracks in Concrete: Feasibility of Impact-Generated Rayleigh-Waves. ACI Materials Journal, 107(3).
[8]. Cho, Y. S., & Lin, F. B. (2000). Integrity analysis of single and multi-layer thin cement mortar slab structures using the spectral analysis of surface wave NDT method. Construction and Building Materials, 14(8), 387-395.
[9]. Carino, N. J. (2001). The impact-echo method: an overview. In Structures 2001: A Structural Engineering Odyssey (pp. 1-18).
[10]. Ervin, B. L., Kuchma, D. A., Bernhard, J. T., & Reis, H. (2009). Monitoring corrosion of rebar embedded in mortar using high-frequency guided ultrasonic waves. Journal of engineering mechanics, 135(1), 9-19.
[11]. Ghose, B., Balasubramaniam, K., Krishnamurthy, C. V., & Rao, A. S. (2011, December). COMSOL based 2D FEM model for ultrasonic guided wave propagation in symmetrically delaminated unidirectional multilayered composite structures. In Proceedings of the national seminar and exhibition on Nondestructive evaluation (Vol. 6).
[12]. Kim, D. S., Kim, H. W., Seo, W. S., Choi, K. C., & Woo, S. K. (2003). Feasibility study of the IE-SASW method for nondestructive evaluation of containment building structures in nuclear power plants. Nuclear engineering and design, 219(2), 97-110.
[13]. Kim, D. S., Seo, W. S., & Lee, K. M. (2006). IE–SASW method for nondestructive evaluation of concrete structure. NDT & E International, 39(2), 143-154.
[14]. Li, D., Ruan, T., & Yuan, J. (2012). Inspection of reinforced concrete interface delamination using ultrasonic guided wave non-destructive test technique. Science China Technological Sciences, 55(10), 2893-2901.
[15]. Lin, C. P., & Chang, T. S. (2004). Multi-station analysis of surface wave dispersion. Soil dynamics and earthquake engineering, 24(11), 877-886.
[16]. Park, C. B., Miller, R. D., & Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64(3), 800-808.
[17]. Piwakowski, B., Fnine, A., Goueygou, M., & Buyle-Bodin, F. (2004). Generation of Rayleigh waves into mortar and concrete samples. Ultrasonics, 42(1-9), 395-402.
[18]. Richart, F. E., Hall, J. R., & Woods, R. D. (1970). Vibrations of soils and foundations.
[19]. Rucka, M., & Zima, B. (2015). Elastic wave propagation for condition assessment of steel bar embedded in mortar. International Journal of Applied Mechanics and Engineering, 20(1), 159-170.
[20]. Qian, Q., Hanachi, H., Liu, J., Gu, J., Ma, F., Koul, A., & Banerjee, A. (2016, June). Simulation of ultrasonic testing for resolution of corrosion detection in pipes. In Prognostics and Health Management (ICPHM), 2016 IEEE International Conference on (pp. 1-5). IEEE.
[21]. Sharma, S., & Mukherjee, A. (2010). Longitudinal guided waves for monitoring chloride corrosion in reinforcing bars in concrete. Structural Health Monitoring, 9(6), 555-567.
[22]. Shevaldykin, V. G., Samokrutov, A. A., & Kozlov, V. N. (2003, September). Ultrasonic low-frequency short-pulse transducers with dry point contact. Development and application. In International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE) in Berlin, Germany.
[23]. Shi, G., & Yang, D. (2002). Determination of the elastic wave velocities in porous rocks with the change of overburden pressure and its universal significance. Science in China Series D: Earth Sciences, 45(7), 635-642..
[24]. Willcocks, M., Veidt, M., & Palmer, G. (2011, January). Spectral analysis of surface waves for damage detection in layered concrete structures. In Proceedings of ACOUSTICS.
[25]. Zima, B., & Rucka, M. (2017). Non-destructive inspection of ground anchors using guided wave propagation. International Journal of Rock Mechanics and Mining Sciences, 94, 90-102.

[26]. 中華民國國家標準 (2014)。混凝土圓柱試體抗壓強度檢測法 CNS 1232。台北市:經濟部標準檢驗局。
[27]. 中華民國國家標準 (2005)。試驗室混凝土試體製作及養護法 CNS 1230。台北市:經濟部標準檢驗局。
[28]. 內政部營建署編輯委員會 (2011)。混凝土結構設計規範。台北市:營建雜誌社。
[29]. 沈進發、陳舜田、張郁慧 (1993)。火害延時對混凝土材料性質之影響。國科會專題研究報告(編號NSC82-0410-E011-079)。
[30]. 施佩文 (2013)。有限元素法研析擬脆材料受熱驅破壞之熱-固耦合。台灣科技大學營建工程系研究所學位論文。
[31]. 柯志揚 (2016)。結合聲-光非破壞檢測於隧道環境遭熱驅破壞之傷損判識。台灣科技大學營建工程系研究所學位論文。
[32]. 黃崑瑭 (2017)。以聲-光非破壞檢測判識隧道襯砌受熱-固傷損之力學行為。台灣科技大學營建工程系研究所學位論文。
[33]. 黃兆龍 (2007)。混凝土性質與行為。台北市:詹氏書局。
[34]. 林俊宏 (2005)。Pseudo-section 概念於表面波震測應用之數值模擬探討。交通大學土木工程系研究所學位論文。
[35]. 胡成泓 (2011)。以頻域及時頻分析輔助孔內震測走時分析自動化。交通大學土木工程系研究所學位論文。
[36]. 張正宙 (2001)。多頻道表面波震測之研究。交通大學土木工程系研究所學位論文。
[37]. 張宏毅 (2017)。以表面 R 波檢測混凝土表面裂縫深度之研究。中興大學土木工程學系研究所學位論文。
[38]. 許慧如 (2015)。以表面 R 波頻散法檢測混凝土結構內部鋼筋周圍裂縫之可行性研究。中興大學土木工程系研究所學位論文。
[39]. 陳育聖 (2011)。北台灣沿海地區氯鹽環境與混凝土耐久性質之研究。臺灣大學土木工程學系研究所學位論文。
[40]. 楊君範 (2003)。混凝土結構敲擊反映波研究。朝陽科技大學營建工程系研究所學位論文。
[41]. 危時秀 (2003)。普通混凝土熱傳導性質之研究。中原大學土木工程系研究所學位論文。
[42]. 趙元和、趙英宏 (1997)。鋼筋混凝土學。台北市:全華。
[43]. 林喻峰、張星鴻、陳明源 (2010)。以敲擊回音法檢測鋼纖維混凝土之保護層厚度。「中華民國力學學會第三十四屆全國力學會議」發表之論文,雲林科技大學。
[44]. 鄒和翰 (2004)。多頻道表面波震測法施測改良與案例分析。交通大學土木工程系研究所學位論文。
[45]. 陳桂清、柯政龍、張道光 (2006)。外加電流式之陰極防蝕於碼頭R.C.面版防蝕之應用。防腐工程,第二十卷(第三期),第241~248頁。
論文全文使用權限:同意授權於2023-08-21起公開