現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:隔熱材料碳纖維圍束於高溫下組成律之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on Constitutive Law of Heat Insulating Material with CFRP Confinement under High Temperature [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:蕭偉強
英文姓名:Wai-Keong Sio
研究生學號:105428409
學位類別:碩士
語文別:中文
口試日期:2018/06/30
論文頁數:154
指導教授中文名:李有豐
口試委員中文名:陳清泉;徐增興;楊子賢;李有豐
中文關鍵詞:碳纖維補強隔熱珍珠岩組成律
英文關鍵詞:CFRPThermal insulationPerliteConstitutive Law
論文中文摘要:由於石油化學工業為全球的產業且與我們生活密不可分,例如民生用品到高科技的原料,石化工廠運輸的管線多為金屬管線,而金屬管線亦因長期暴露在酸性及氯離子的環境中容易鏽蝕,造成金屬管線破壞,釀成災害。本研究提出隔熱材料與碳纖維圍束之金屬管線補強工法,首先研究隔熱材料,使用波特蘭I型水泥及早強水泥分別添加不同分量的珍珠岩進行常溫及高溫(150℃及250℃)的抗壓強度試驗,比較兩者的抗壓強度變化,再找出高溫下材料的組成律。由試驗結果發現,試體之抗壓強度會隨著珍珠岩分量增加而下降。接著將各水泥加入4種配比之珍珠岩試體,分別各圍束一層、兩層和三層,進行碳纖維圍束試驗。試驗結果發現兩種水泥在圍束後試體之抗壓強度會有明顯的上升。再由試驗結果,推導碳纖維圍束下之組成律。最後提出隔熱材料受碳纖維圍束於高溫下之耦合組成律。
論文英文摘要:As a global industry, the petrochemical industry has become an inextricable part of our lives as it is a vital material for consumer and high-tech products. Pipelines transporting petroleum by-product are mainly made of metal, which easily rusts if exposed to acidic and chloride ion environment, making these metal pipelines vulnerable to corrosion, thus causing eventual tragedy. This study proposes a repair method for metal pipelines using thermal insulation material and CFRP. First, a test on material was conducted by adding different amounts of perlite into Portland I-type and high-early-strength cement in order to test the compressive strength of both materials. The compressive strength of both materials was compared to form the constitutive law for materials under high temperature. The results indicate that specimen compressive strength decrease as the amount of perlite increase. Furthermore, each cement specimen was added four different ratios of perlite and confined within one layer, two layers, and three layers for the CFRP confinement experiment. The test results show that compressive strength of both cements increase significantly after the CFRP confinement test. In addition, the constitutive law of material confined with CFRP can be derived, forming a coupled constitutive law of thermal insulation material with CFRP confinement under high temperature.
論文目次:摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的及內容 6
第二章 文獻回顧 8
2.1 水泥及隔熱材料相關研究 8
2.2 CFRP圍束混凝土相關研究 18
第三章 實驗規劃與試體製作 24
3.1 實驗相關設備 24
3.2 實驗相關材料 27
3.3 材料配比試驗 31
3.3.1 材料7天齡期抗壓試驗 33
3.4 CFRP圍束隔熱材抗壓試驗 35
3.4.1 圓柱(無圍束及圍束)試體製作 35
第四章 圍束實驗結果比較 39
4.1 材料配比試驗 39
4.2 無圍束試體抗壓試驗 39
4.3 CFRP圍束抗壓試驗 43
4.3.1 波特蘭水泥加入0 %珍珠岩 45
4.3.2 波特蘭水泥加入10 %珍珠岩 51
4.3.3 波特蘭水泥加入20 %珍珠岩 57
4.3.4波特蘭水泥加入30 %珍珠岩 63
4.3.5 早強水泥加入0 %珍珠岩 70
4.3.6 早強水泥加入10 %珍珠岩 76
4.3.7 早強水泥加入20 %珍珠岩 82
4.3.8 早強水泥加入30 %珍珠岩 88
第五章 溫度下實驗結果比較 95
5.1 材料配比試驗 95
5.2 波特蘭水泥齡期28天之抗壓試驗結果 95
5.3 早強水泥齡期28天之抗壓試驗結果 102
5.4 小結 109
第六章 實驗值與理論值之比較 110
6.1 CFRP圍束組成律理論 110
6.1.1 波特蘭水泥CFRP之圍束組成律 112
6.1.2 早強水泥CFRP之圍束組成律 121
6.2 高溫下隔熱材料之材料參數 130
6.2.1 波特蘭水泥高溫下的組成律 130
6.2.2 早強水泥高溫下的組成律 139
6.3 隔熱材料高溫下及CFRP圍束耦合組成律 148
6.4 實驗值與理論值比較小結 148
第七章 結論 150
參考文獻 151
論文參考文獻:1. Ergün, A., Kürklü, G., Başpınar, M. S. and Mansour, M. Y., “The Effect of Cement Dosage on Mechanical Properties of Concrete Exposed to High Temperatures,” Fire Safety Journal, Vol. 55, pp. 160-167 (2013).
2. Ramezanianpour, A. A., Karein, S. M. M., Vosoughi, P., Pilvar, A., Isapour, S. and Moodi, F., “Effects of Calcined Perlite Powder as a SCM on the Strength and Permeability of Concrete,” Construction and Building Materials, Vol. 66, No. 15, pp. 222-228 (2014).
3. Topçu, I. B. and Işıkdağ, B., “Manufacture of High Heat Conductivity Resistant Clay Bricks Containing Perlite,” Building and Environment, Vol. 42, pp. 3540-3546 (2007).
4. Topçu, I. B. and Işıkdağ, B., “Effect of Expanded Perlite Aggregate on the Properties of Lightweight Concrete,” Journal of Materials Processing Technology, Vol. 204, No. 1-3, pp. 34-38 (2008).
5. Tasdemir, C., Sengul, O. and Tasdemir, M.A., “A Comparative Study on The Thermal Conductivities and Mechanical Properties of Lightweight Concretes,” Energy and Buildings, Vol. 151, pp. 469-475 (2017).
6. Sengul, O., Azizi, S., Karaosmanoglu, F. and Tasdemir, M.A., “Effect of Expanded Perlite on the Mechanical Properties and Thermal Conductivity of Lightweight Concrete,” Energy and Buildings, Vol. 43, pp. 671-676 (2011).


7. Demirboğa, R., Örüng, İ. and Gül, R., “Effect of Expanded Perlite Aggregate and Mineral Admixtures on The Compressive Strength of Low-density Concretes,” Cement and Concrete Research, Vol. 31, pp. 1627-1632 (2001).
8. Huang, Z., Liew, J. Y. R. and Li, W., “Evaluation of Compressive Behavior of Ultra-Lightweight Cement Composite After Elevated Temperature Exposure,” Construction and Building Materials, Vol. 148, pp. 579-589 (2017).
9. Oktay, H., Yumrutaş, R. and Akpolat, A., “Mechanical and Thermophysical Properties of Lightweight Aggregate Concretes,” Construction and Building Materials, Vol. 96, pp. 217-225 (2015).
10. Ma, Q., Guo, R., Zhao, Z., Lin, Z. and He, K., “Mechanical Properties of Concrete at High Temperature – A review,” Construction and Building Materials, Vol. 93, pp. 371-383 (2015).
11. Wongkeo, W., Thongsanitgarn, P., Pimraksa, K. and Chaipanich, A., “Compressive Strength Flexural Strength and Thermal Conductivity of Autoclaved Concrete Block Made Using Bottom Ash as Cement Replacement Materials,” Materials and Design, Vol. 35, pp. 434-439 (2012).
12. Li, Y.-F., Lin, C.-T. and Sung, Y.-Y., “A Constitutive Model for Concrete Confined with Carbon Fiber Reinforced Plastics,” Mechanics of Materials, Vol. 35, No. 3-6, pp. 603-619 (2003).
13. Al-Salloum, Y. A., Elsanadedy, H. M. and Abadel, A. A., “Behavior of FRP-Confined Concrete after High Temperature Exposure,” Construction and Building Materials, Vol. 25, No. 2, pp. 838-850 (2011).
14. Lim, J. C. and Ozbakkaloglu, T., “Influence of Concrete Age on Stress-strain Behavior of FRP-confined Normal- and High-strength Concrete,” Construction and Building Materials, Vol. 82, pp. 61-70 (2015).
15. Berthet, J. F., Ferrier, E. and Hamelin, P., “Compressive Behavior of Concrete Externally Confined by Composite Jackets. Part A: Experimental Study,” Construction and Building Materials, Vol. 19, pp. 223-232 (2005).
16. Saeed, H. Z., Khan, Q. U. Z., Khan, H. A. and Farooq, R., “Experimental Investigation of Stress-strain Behavior of CFRP Confined Low Strength Concrete (LSC) Cylinders,” Construction and Building Materials, Vol. 104, pp. 208-215 (2016).
17. Belouar, A., Laraba, A., Benzaid, R. and Chikh, N., “Structural Performance of Square Concrete Columns Wrapped with CFRP Sheets,” Procedia Engineering Vol. 54, pp. 232-240 (2013).
18. Zhou, J., Bi, F., Wang, Z. and Zhang, J., “Experimental Investigation of Size Effect on Mechanical Properties of Carbon Fiber Reinforced Polymer (CFRP) Confined Concrete Circular Specimens,” Construction and Building Materials, Vol. 127, pp. 643-652 (2016).
19. Micelli, F. and Modarelli, R., “Experimental and Analyticl Study on Properties Affecting the Behavior of FRP-confined Concrete,” Composites: Part B, Vol. 45, pp. 1420-1431 (2013).
20. Trapko, T., “The Effect of High Temperature on the Performance of CFRP and FRCM Confined Concrete Elements,” Composites: Part B, Vol. 54, pp. 138-145 (2013).
21. 李有豐,FRP 複合材料於土木與建築工程之應用,台灣區複合材料工業同業公會,臺北,臺灣 (2012)。
22. 蔡宗翰,高溫管線隔熱補強新工法可行性之研究,碩士論文,國立臺北科技大學,臺北(2015)
23. 邱盛宏,高溫管線預製式隔熱補強理論與實驗之研究,碩士論文,國立臺北科技大學,臺北(2016)
24. http://news.ltn.com.tw/news/focus/paper/414197
25. http://news.ltn.com.tw/news/society/breakingnews/2325653
26. http://www.cm168repair.com.tw/project03.html
27. http://www.perlite.com.tw/product_949154.html
論文全文使用權限:同意授權於2021-08-16起公開