現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:LID應用於都市與郊區防洪功能之評估 [以論文名稱查詢館藏系統]
論文英文名稱:Assessment of flood prevention on Urban and Suburban Area using LID [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:李昱廣
英文姓名:YU-KUANG LEE
研究生學號:105428034
學位類別:碩士
語文別:中文
口試日期:2018/07/23
論文頁數:106
指導教授中文名:林鎮洋
指導教授英文名:JEN-YANG LIN
口試委員中文名:何嘉浚;呂理德
口試委員英文名:CHIA-CHUN HO;LI-TEH LU
中文關鍵詞:都市化郊區低衝擊開發都市地表逕流海綿城市監測SWMM
英文關鍵詞:UrbanizationSuburbanLow-Impact Development(LID)Urban RunoffSponge citySWMM
論文中文摘要:全球氣候變遷,過度的土地利用與都市化的過程,破壞了原有的環境與水資源的循環,因高密度水泥化的環境,導致當雨水落下時,土壤原有的入滲、保水與截流等水文循環的功能喪失,連帶影響都市失去河川自淨的功能。而臺灣因為地理環境限制,使得雨水不易保留,加上都市人口的成長,導致水資源的需求與日俱增。
  近幾年,低衝擊開發(Low Impact Development,以下簡稱LID)這個名詞,出現在許多都市規劃未來首要推動的目標之一,而「低衝擊開發」是由許多不同的基礎設施,透過儲存、滲透、蒸發及延遲徑流等功能,並且以生態系統為基礎的管理方式。
  水資源循環是一個影響範圍極廣的系統,故在本論文裡,將研究區域設置於臺北市大安區的大安高工校門口以及桃園市蘆竹區的大華北街,研究方法將LID設施規畫於研究區域,並分別在一般道路與LID設施中,設置監測儀器,包括:雨量計、水位計、溫度計等,來量測雨量、流量與溫度的監測資料比對。接著將蒐集的資料統整並分析數據之後,了解設置LID設施於都市與郊區時,不同的LID配置情境對雨水容受的程度與地表逕流的削減能力。另外,透過溫度計的監測數據,了解透水鋪面對熱島效應的改善效果。
  完成上述資料蒐集與分析後,透過SWMM(Storm Water Management Model)模式,針對不同的LID設施規畫及降雨情境進行模擬後,將LID設施的模擬效益進行量化,以供氣候變遷導致災害頻傳的未來,當有需要設置LID設施以削減徑流來減災、防災時,能有一LID效益量表,可供規畫者參考、配置LID設施,避免造成資源的浪費及對環境的二度傷害。
  研究結果顯示,LID設施對地表逕流削減能力是優異的,其削減能力差異與其規劃位置、面積以及LID設施內部配置有關。而透水鋪面在含水情況下,相較於一般道路鋪面是有所改善的。
論文英文摘要:Global climate change, excessive land utilization, and urbanization damage the natural circulation of environmental and water resources. During the rain falls, soil in areas with high density of concrete structures lost its fundamental hydrologic functions, including infiltration, water retention and interception, which may affect river’s ability to self-purify. Furthermore, challenges in rainwater retention due to geographical restrictions and the growing urban population in Taiwan have led to increasing demands for water resources.
Low impact development (LID) has become a top goal in many urban planning initiatives in recent years. LID is an ecosystem-based management approach that utilizes numerous infrastructure to manage functions such as storage, infiltration, evaporation and delayed runoff.
The water cycle system has a wide range of impact and influences. In this thesis, the entrance of Daan Vocational High School in Daan District of Taipei City and Dahua North Street in Luzhu District of Taoyuan City were identified as the areas of LID. Data on rainfall, water flow, and temperature were collected using rain gauges, water gauges, thermometers placed within the LID areas and on surface streets. Results of this thesis can contribute to the current understanding of the degree of reduction in rainwater tolerance and surface runoff between LID facilities situated in urban or suburban areas.
Benefits of LID facilities were estimated through simulating different LID facility planning and rainfall scenarios using the storm water management model (SWMM). These results could provide a reference for the benefits and configuration of LID in the future when climate change-related disasters occur or when the need for LID facilities arises, in the hope of minimizing and preventing the impacts of disasters, avoiding waste of resources, and preventing repeatedly damages to the environment.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 章節介紹 3
第二章 文獻回顧 4
2.1 都市水資源 4
2.2 LID-BMPs 8
2.2.1 LID設施 14
2.2.2 影響LID因素 18
2.3 監測計畫 19
2.3.1 監測儀器 20
2.4 水文模式 22
2.4.1 SWMM模式介紹 22
2.4.2 SWMM模式率定與驗證 23
2.5 案例介紹 24
第三章 研究方法 32
3.1 研究區域背景 32
3.1.1 臺北市大安區大安高工 33
3.1.2 桃園市蘆竹區大華北街 35
3.2 大安高工監測計畫 38
3.2.1 大安高工監測儀器配置 38
3.2.2 大安高工監測儀器介紹 39
3.3 大華北街監測計畫 43
3.3.1 大華北街監測儀器配置 43
3.3.2 大華北街監測儀器介紹 43
3.4 模式介紹 45
3.4.1 暴雨管理模式(SWMM) 46
3.4.2 水文運算理論 47
3.4.3 低衝擊開發模組 52
3.5 大安高工與大華北街逕流模擬 55
3.5.1 大安高工SWMM模式建置與流程 55
3.5.2 大華北街SWMM模式建置與流程 58
3.5.3 情境模擬分析 62
第四章 結果與討論 63
4.1 大安高工逕流模擬 63
4.1.1 大安高工流量率定與驗證 63
4.1.2 設計暴雨情境模擬 75
4.1.3 小結 78
4.2 大華北街逕流模擬 88
4.2.1 大華北街監測現況 88
4.2.2 大華北街合理化公式驗證 90
4.2.3 大華北街設計暴雨情境模擬 91
4.2.4 小結 93
4.3 比較大安高工與大華北街多孔隙瀝青削減能力 94
4.3.1 小結 96
第五章 結論與建議 97
5.1 結論 97
5.2 建議 99
參考文獻 100
論文參考文獻:1.Hoyer, J., Dickhaut, W., Kronawitter, L., and Weber, B., “Water sensitive urban design: principles and inspiration for sustainable stormwater management in the city of the future”, Hamburg, Germany, Jovis, 2011.
2.Lloyd, S. D., Wong, T. H., and Chesterfield, C. J., “Water sensitive urban design- a stormwater management perspective”, 2002.
3.Martin, C., Y. Ruperd, and M. Legret., “Urban stormwater drainage management: The development of a multicriteria decision aid approach for best management practices”, European journal of operational research, 181(1), 2007, pp. 338-349.
4.Foster, J., Lowe, A., and Winkelman, S., “The value of Green Infrastructure for Urban Climate Adaptation”, Center for Clean Air Policy, 750, 1-52, 2011.
5.Hoyer, J., Dickhaut, W., Kronawitter, L., and Weber, B., “Water sensitive urban design: principles and inspiration for sustainable stormwater management in the city of the future”, Wageningen University & Research, 2011.
6.Baek, S. S., Choi, D. H., Jung, J. W., Lee, H. J., Lee, H., Yoon, K. S., and Cho, K. H., “Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach”, Water research, 86, 2015.
7.Elliott, A. H., and Trowsdale, S. A., “A review of models for low impact urban stormwater drainage”, 22(3), 2007, pp. 394-405.
8.Kong, F., Ban, Y., Yin, H., James, P., and Dronova, I., “Modeling stormwater management at the city district level in response to changes in land use and low impact development”, 95, 2017, pp. 132-142.
9.Chapman, C., and Horner, R. R., “Performance assessment of a street-drainage bioretention system”, Water Environment Research, 82(2), 2010, pp. 109-119.
10.Federal Interagency Stream Restoration Working Group (FISRWG), “Stream corridor restoration: principles, processes, and practices”, 1998.
11.Villarini, G., Mandapaka, P. V., Krajewski, W. F., and Moore, R. J., “Rainfall and sampling uncertainties: A rain gauge perspective. Journal of Geophysical Research: Atmospheres”, Journal of Geophysical Research: Atmospheres, 113(D11), 2008 .
12.Sikorska, A. E., and Seibert, J., “Value of different precipitation data for flood prediction in an alpine catchment: A Bayesian approach”, Journal of Hydrology, 2016.
13.Chen, Y., and Han, D., “Water quality monitoring in smart city: A pilot project”, Automation in Construction, 89(1), 2018, pp. 307-316.
14.Connor, R., “The United Nations world water development report 2015: water for a sustainable world”, UNESCO Publishing, 2015.
15.Wolf, L., Morris, B., Burn, S., and Weber, B., “Urban Water Resources Toolbox”, IWA Publishing, 2007.
16.Eckart, K., McPhee, Z., and Bolisetti, T., “Performance and implementation of low impact development–A review”, Science of the Total Environment, 607, 2017, pp. 413-432.
17.Chen, Y., Samuelson, H. W., and Tong, Z., and Weber, B., “Integrated design workflow and a new tool for urban rainwater management”, Journal of environmental management, 180, 2016, pp. 45-51.
18.Konrad, C. P., and Booth, D. B., “Hydrologic changes in urban streams and their ecological significance”, American Fisheries Society Symposium, Vol. 47, 2015, pp. 157-177.
19.Stovin, V. R., Moore, S. L., Wall, M., and Ashley, R. M., “The potential to retrofit sustainable drainage systems to address combined sewer overflow discharges in the Thames tideway catchment”, Water and Environment Journal, 27(2), 2013, pp. 216-228.
20.Damodaram, C., Giacomoni, M. H., Prakash Khedun, C., Holmes, H., Ryan, A., Saour, W., and Zechman, E. M., “Simulation of combined best management practices and low impact development for sustainable stormwater management1”, JAWRA Journal of the American Water Resources Association, 46(5), 2010, pp. 907-918 , .
21.Ahiablame, L. M., Engel, B. A., and Chaubey, I. “Effectiveness of low impact development practices in two urbanized watersheds: retrofitting with rain Barrel/cistern and porous pavement”, Journal of environmental management, 119, 2013, pp. 151-161.
22.Ahiablame, L. M., Engel, B. A., and Chaubey, I., “Effectiveness of low impact development practices: literature review and suggestions for future research”, Water, Air, & Soil Pollution, 223(7), 2012, pp. 4253-4273.
23.Drake, J., Bradford, A., and Van Seters, T., “Hydrologic performance of three partial-infiltration permeable pavements in a cold climate over low permeability soil”, Journal of Hydrologic Engineering, 19(9), 2013.
24.Liu, Y., Ahiablame, L. M., Bralts, V. F., and Engel, B. A., “Enhancing a rainfall-runoff model to assess the impacts of BMPs and LID practices on storm runoff”, Journal of environmental management, 147, 2015, pp. 12-23.
25.Hamel, P., Daly, E., and Fletcher, T. D., “Source-control stormwater management for mitigating the impacts of urbanisation on baseflow: a review”, Journal of Hydrology, 485, 2013, pp. 201-211.
26.Shuster, W. D., Morrison, M. A., and Webb, R., “Front-loading urban stormwater management for success–a perspective incorporating current studies on the implementation of retrofit low-impact development”, Cities and the Environment (CATE), 1(2), 2008, pp. 8.
27.Brown, R. A., Line, D. E., and Hunt, W. F., “LID treatment train: Pervious concrete with subsurface storage in series with bioretention and care with seasonal high water tables”, Journal of Environmental Engineering, 138(6), 2011, pp. 689-697.
28.Sun, G., Hu, T., Yang, G., and Jia, J., “Real-time and clock-shared rainfall monitoring with a wireless sensor network”, Computers and Electronics in Agriculture, 119, 1-11, 2015.
29.Hernandez, M., Miller, S. N., Goodrich, D. C., Goff, B. F., Kepner, W. G., Edmonds, C. M., and Jones, K. B., “Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds”, Monitoring Ecological Condition in the Western United States, Springer, Dordrecht, 2000, pp. 285-298.
30.Colli, M., Lanza, L. G., and Chan, P. W., “Co-located tipping-bucket and optical drop counter RI measurements and a simulated correction algorithm”, Atmospheric Research, 119, 2013, pp. 3-12.
31.Zahmatkesh, Z., Burian, S. J., Karamouz, M., Tavakol-Davani, H., and Goharian, E., “Low-impact development practices to mitigate climate change effects on urban stormwater runoff: Case study of New York City”, Journal of Irrigation and Drainage Engineering, 141(1), 2015.
32.Joyce, J., Chang, N. B., Harji, R., Ruppert, T., and Imen, S., “Developing a multi-scale modeling system for resilience assessment of green-grey drainage infrastructures under climate change and sea level rise impact”, Environmental Modelling & Software, 90, 2015, pp. 1-26.
33.Ewing, S. A., Grayson, R. B., and Argent, R. M., “Science, citizens, and catchments: Decision support for catchment planning in Australia”, Society & Natural Resources, 13(5), 2000, pp. 443-459.
34.Rossman, L. A., “Storm water management model users manual, version 5.0”, Cincinnati: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency, 2010.
35.Holman‐Dodds, J. K., Bradley, A. A., and Potter, K. W., “Evaluation of hydrologic benefits of infiltration based urban storm water management”, JAWRA Journal of the American Water Resources Association, 39(1), 2003, pp. 205-215.
36.Zoppou, C., “Review of urban storm water models”, Environmental Modelling & Software, 16(3), 2001, pp. 195-231.
37.Elliott, A. H., and Trowsdale, S. A., “A review of models for low impact urban stormwater drainage”, Environmental modelling & software, 22(3), 2007, pp. 394-405.
38.Qin, H. P., Li, Z. X., and Fu, G., “The effects of low impact development on urban flooding under different rainfall characteristics”, Journal of environmental management, 129, 2013, pp. 577-585.
39.Kong, F., Ban, Y., Yin, H., James, P., and Dronova, I., “Modeling stormwater management at the city district level in response to changes in land use and low impact development”, Environmental Modelling & Software, 95, 2017, pp. 132-142.
40.Jia, H., Yao, H., Tang, Y., Shaw, L. Y., Field, R., and Tafuri, A. N., “LID-BMPs planning for urban runoff control and the case study in China”, Journal of environmental management, 149, 2015, pp. 65-76.
41.Liu, L., and Jensen, M. B., “Green infrastructure for sustainable urban water management: Practices of five forerunner cities”, Cities, 74, 2018, pp. 126-133.
42.Qin, H. P., Li, Z. X., and Fu, G., “The effects of low impact development on urban flooding under different rainfall characteristics”, Journal of environmental management, 129, 2013, pp. 577-585.
43.World Pumps, “Flood monitoring project protects from high rainfall”, 7, 2017, pp. 24-25.
44.Bricker, S. H., Banks, V. J., Galik, G., Tapete, D., and Jones, R., “Accounting for groundwater in future city visions”, Land Use Policy, 69, 2017, pp. 618-630.
45.Zoppou, C., “Review of urban storm water models”, Environmental Modelling & Software, 16(3), 2001, pp. 195-231.
46.內政部營建署,雨水下水道設計指南,2000。
47.Lewis A. R., Lee S. P., 雨水管理模型SWMM(5.0版)用戶手冊,上海市同濟大學環境科學與工程學院翻譯,2011。
48.王价巨,明日的城市與水共存的出路,臺灣濕地網,2012。
49.傅金城,綜合流域治理概念,銘傳大學都市規劃與防災學系演講資料,桃園,2014。
50.林峰田,土地使用減災空間規劃方法,臺灣大學建築與城鄉研究所電腦輔助空間規劃設計研究室技術報告,2007
51.內政部營建署,都市暴雨模擬分析系統操作手冊,營建署委託,國立臺灣大學執行,2009。
52.內政部營建署,水環境低衝擊開發設施操作手冊編製與案例評估計畫,營建署委託,國立臺灣大學執行,2015。
53.周乃昉,水庫洩洪流量演算模式之評估與研發(2/3),行政院國家科學委員會專題研究計畫,2005。
54.陳彥丞、林俐玲,應用降雨沖蝕指數和降雨資料探討水土保持開發整地之最佳施工月份,水土保持學報,第四十四期,2012,217-230頁。
55.許銘熙、林洙宏、傅金城、陳信中,「結合類神經網路之動力波模式-蘭陽溪洪水預報為例」,農業工程學報,第五十六卷,第三期,2010,12-31頁。
56.林鎮洋、余嘯雷,低衝擊開發技術研發,行政院科技部專題研究計畫成果報告,2015。
57.徐年盛,「低衝擊開發綠色減洪新技術」,營建知訊期刊,第三百七十三期,2014年,33-45頁。
58.張嘉玲,「低衝擊開發之應用及發展趨勢」,土木水利期刊,第三十五卷,第四期,2008,104-110頁。
59.臺北市政府工務局水利工程處,復興南路二段大安高工前人行道鋪面排水監測案,水利工程處委託,國立臺北科技大學水環境研究中心執行,2017。
60.桃園市蘆竹區公所,桃園市蘆竹區宏竹里大華北街 (第三期 )道路改善工程,蘆竹區公所委託,台禹監測科技股份有限公司執行,2017。
61.桃園市蘆竹區公所,蘆竹市宏竹里大華北街(第三期)道路改善工程實驗成果報告書,蘆竹區公所委託,國立中央大學土木工程學系執行,2017。
62.桃園市蘆竹區公所,蘆竹市宏竹里大華北街(第三期)道路改善工程金品獎簡報,蘆竹區公所委託,四海工程顧問有限公司執行,2017。
63.桃園市蘆竹區公所,大華北街道路暨排水系統平縱斷面圖,蘆竹區公所委託,四海工程顧問有限公司執行,2017。
64.李岳壇,大華北街三期道路工程,國立臺北科技大學演講報告,2017。
65.張玉良,應用地理資訊系統於水文管理之研究-以嘉義鰲鼓溼地為例,碩士論文,國立中山大學海洋環境及工程研究所,高雄,2011。
66.廖信凱,低衝擊開發對於逕流抑制評估-以桃園航空城雙溪基地為例,碩士論文,國立臺北科技大學,臺北,2016。
67.林憬楠,基隆河示範河段總量管制之研究,碩士,國立臺北科技大學,臺北,2017。
68.賴怡伶,各國暴雨逕流制度與管理策略之比較研究,碩士論文,國立臺北科技大學,臺北,2012。
論文全文使用權限:不同意授權