現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以有限元素法模擬碳纖維貼布進行風機塔柱結構體補強之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on Finite Element Analysis for the CFRP Repair Method of Wind Turbine Tower [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:蕭禾堅
英文姓名:HE-CHIEN HSIAO
研究生學號:105428003
學位類別:碩士
語文別:中文
口試日期:2018/06/30
論文頁數:134
指導教授中文名:李有豐
指導教授英文名:Yeou-Fong Li
口試委員中文名:陳清泉;徐增興;楊子賢;李有豐
口試委員英文名:Chern,Ching-Chuan;Hsu,Tseng-Hsing;Tzu-Hsien Yang;Yeou-Fong Li
中文關鍵詞:有限元素法風力發電機塔架碳纖維強化高分子複合材料補強方法
英文關鍵詞:Finite element methodWind turbine towerCarbon fiber reinforced polymericRepair method
論文中文摘要:本研究針對既有受損的風機電塔進行破壞模式之蒐集、探討與彙整,結合碳纖維強化高分子複合材料(Carbon Fiber Reinforced Plastics, CFRP)進行受損風機塔柱之結構補強。透過鋼管縮尺試體側推加載實驗的進行,研究共規劃了四種不同碳纖維方向的補強方式,並分別於試體規劃切割弱點處各補強兩層之CFRP貼布,以此驗證CFRP複合材料與補強方法之成效。由分析與實驗結果顯示,貼覆角度沿橫軸方向的增加,其補強效果亦是相對提升,且皆於試體固定端處發生彎曲之變形;其中未補強試體與貼覆±60度之分析實體模型,力-位移曲線趨勢與實驗結果近似,且兩組試體分析值與實驗值之誤差百分比皆於容許範圍內;另外,貼覆角度為±30度、±45度、90+0度之分析試體,誤差百分比相對於前者有稍大之現象,但力-位移關係曲線趨勢是具可行性的與實驗結果相似。另外,各試體於25 cm處所量測之其值相較於各高度之數據,乃初始勁度與降伏強度皆由偏高之趨勢。將不同的包覆層數及長度應用於模擬實體風機塔柱之補強工程,其分析結果之應力分佈與變形趨勢經合理驗證後皆符合風機電塔結構耐風設計規定。
論文英文摘要:This study is aimed at collecting, discussing, and assembling the damage modes of damaged wind tower. By design, the carbon fiber reinforced polymer (CFRP) composite material was used to repair the wind turbine tower. Through the small-scale steel tube simulating the tower column, the push over test was conducted. The study planned four CFRP repair directions, with two reinforced layers of CFRP patch to cut weaknesses, verifying the CFRP composite material and repair method. The results of analysis and experiments show that as the angle increases along the horizontal axis, the reinforcement effect was also increased, and the overall bending effect was minimized as a result. In the two-layer repair method at ±60 degrees of the analysis model of steel, the predicted value was less than the experimental value in the results, but the trends of the force-displacement curve were similar to that of the experiment results. The error percentage of the experimental value is allowable. From the repair method of ±30 degrees, ±45 degrees, and 90 + 0 degrees, although the error percentage is slightly larger than the former, and the loading was higher than the experimental value, the trends of the force-displacement curve were also similar to that of the experiment results. In addition, the values measured at 25 cm for each sample are higher than those for elsewhere height, indicate that both the initial stiffness and the yield strength of this specific point are higher than the rest. The number of different layers and lengths were tested on the reinforcement process of the simulated solid-wind turbine tower. The stress distribution and deformation trends of the analysis results were all in line with the wind-resistant design requirements of the wind turbine tower structure.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 國外相關研究 3
1.2.2 國內相關研究 18
1.3 研究內容與流程規劃 21
第二章 材料之組成律與力學性質介紹 23
2.1 不鏽鋼金屬材料之應力-應變關係 23
2.2 纖維高分子基複合材料之應力-應變關係 29
2.2.1 纖維高分子基複合材料之基本力學性質 31
2.3 材料之彈塑性力學理論 35
2.3.1 Von-Mises降伏準則 36
2.3.2 硬化法則 37
第三章 有限元素分析模型建立與參數設定 39
3.1 ANSYS之有限元素分析介紹 39
3.2 元素介紹 41
3.2.1 薄殼(面)元素之SHELL181介紹 41
3.2.2 物件接合元素之CONTA 174介紹 42
3.3 材料模型之性質設定 44
3.4 有限元素模型之建立 47
3.5 非線性結構分析 52
3.6 非線性分析之求解法 54
第四章 縮尺比例風機塔柱之有限元素分析 57
4.1 分析試體與材料性質介紹 57
4.2 分析與實驗結果比較 59
4.2.1 Steel 59
4.2.2 Steel_F_C30_2 64
4.2.3 Steel_F_C45_2 68
4.2.4 Steel_F_C60_2 73
4.2.5 Steel_F_C90+0_2 77
4.3 小結 84
第五章 實體風機塔柱之有限元素分析 85
5.1風荷載計算 85
5.1.1 設計風力計算式 85
5.1.2 自然振動週期 86
5.1.3 陣風反應因子 86
5.2 風機塔柱結構之有限元素分析 87
5.2.1 分析試體規劃與材料性質介紹 87
5.3 設計風速之有限元素分析模擬 89
5.3.1 包覆長度23.55 m之兩層CFRP貼布分析試體 90
5.4 風機塔柱非線性側推分析 93
5.4.1 包覆長度23.55 m之兩層CFRP貼布分析試體 94
5.4.2 包覆長度36.05 m之兩層CFRP貼布分析試體 99
5.4.3 包覆長度23.55 m之四層CFRP貼布分析試體 103
5.4.4 包覆長度36.05 m之四層CFRP貼布分析試體 108
5.5 小結 112
第六章 結論與建議 114
6.1 結論 114
6.2 建議 115
參考文獻 116
論文參考文獻:1.Amirinia, G., and Jung, S., “Along-Wind Buffeting Responses of Wind Turbines Subjected to Hurricanes Considering Unsteady Aerodynamics of The Tower,” Engineering Structures, Vol. 138, pp. 337-350, (2017).
2.Liu, W., “Design and Kinetic Analysis of Wind Turbine Blade-Hub-Tower Coupled System,” Renewable Energy, Vol. 94, pp. 547-557, (2016).
3.Hu, Y., Baniotopoulos, C., and Yang, J., “Effect of Internal Stiffening Rings and Wall Thickness on the Structural Response of Steel Wind Turbine Towers,” Engineering Structures, Vol. 81, pp. 148-161, (2014).
4.Chen, X., Li, C., and Xu, J., “Failure Investigation on a Coastal Wind Farm Damaged by Super Typhoon: A Forensic Engineering Study,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 147, pp. 132-142, (2015).
5.Al Zand, A., Badaruzzaman, W., Mutalib, A., and Qahtan, A., “Finite Element Analysis of Square CFST Beam Strengthened by CFRP Composite Material,” Thin-Walled Structures, Vol. 96, pp. 348-358, (2015).
6.Asareh, M., Schonberg, W., and Volz, J., “Fragility Analysis of a 5-MW NREL Wind Turbine Considering Aero-Elastic and Seismic Interaction Using Finite Element Method,” Finite Elements in Analysis and Design, Vol. 120, pp. 57-67, (2016).
7.Fujiyama, C., Yonetsu, K., Maeshima, T., and Koda, Y., “Identifiable Stress State of Wind Turbine Tower-Foundation System Based on Field Measurement and FE Analysis,” Procedia Engineering, Vol. 95, pp. 279-289, (2014).
8.Gentils, T., Wang, L., and Kolios, A., “Integrated Structural Optimisation of Offshore Wind Turbine Support Structures Based on Finite Element Analysis and Genetic Algorithm, ” Applied Energy, Vol. 199, pp. 187-204, (2017).
9.Al Zand, A., Badaruzzaman, W., Mutalib, A., and Hilo, S., “Rehabilitation and Strengthening of High-Strength Rectangular CFST Beams Using a Partial Wrapping Scheme of CFRP Sheets: Experimental and Numerical Study,” Thin–Walled Structures, Vol. 114, pp. 80-91, (2017).
10.Jay, A., T. Myers, A., Torabian, S., Mahmoud, A., Smith, E., Agbayani, N., and Schafer, B., “Spirally Welded Steel Wind Towers: Buckling Experiments, Analyses, and Research needs,” Journal of Constructional Steel Research, Vol. 125, pp. 218-226, (2016).
11.Karpat, F., “A Virtual Tool for Minimum Cost Design of a Wind Turbine Tower with Ring Stiffeners,” Energies, Vol. 6, No. 8, pp. 3822-3840, (2013).
12.Umesh K, N., Bharath, P., and Mohamed Farzath, L., “Design and Analysis of 2-MW Wind Turbine Tower,” International Journal of Mechanical and Production Engineering (IJMPE), Vol. 4, No. 10, pp. 13-17, (2016).
13.Chou, J. S., and Tu, W. T., “Failure Analysis and Risk Management of a Collapsed Large Wind Turbine Tower,” Engineering Failure Analysis, Vol. 18, No. 1, pp. 295-313, (2011).
14.Botz, M., Oberlaender, S., Raith, M., and Grosse, C. U., “Monitoring of Wind Turbine Structures with Concrete-steel Hybrid-tower Design,” 8th European Workshop on Structural Health Monitoring (EWSHM), Spain, (2016).
15.Chantharasenawong, C., Jongpradist, P., and Laoharatchapruek, S., “Preliminary Design of 1.5-MW Modular Wind Turbine Tower,” The 2th TSME International Conference on Mechanical Engineering, Thailand, (2011).
16.Hafeez, S. A., “Structural Design Optimization of Horizontal Axis Wind Turbine Towers,” International Journal and Magazine of Engineering, Technology, Management and Research, Vol. 3, No. 8, pp. 958-964, (2016).
17.Chen, X., and Xu, J. Z., “Structural Failure Analysis of Wind Turbines Impacted by Super Typhoon Usagi,” Engineering Failure Analysis, Vol. 60, pp. 391-404, (2016).
18.Wang, L., Kolios, A., Luengo, M. M., and Liu, X., “Structural Optimisation of Wind Turbine Towers Based on Finite Element Analysis and Genetic Algorithm,” Wind Energy Science, (2016).
19.Patil, A., Jung, S., and Kwon, O. S., “Structural Performance of a Parked Wind Turbine Tower Subjected to Strong Ground Motions,” Engineering Structures, Vol. 120, pp. 92-102, (2016).
20.Liu, W. Y., “The Vibration Analysis of Wind Turbine Blade-Cabin-Tower Coupling System,” Engineering Structures, Vol. 56, pp. 954-957, (2013).
21.Ramberg, W., and Osgood, W. R., “Description of Stress-Strain Curves by Three Parameters,” National Advisory Committee for Aeronautics, No. 902, (1943).
22.Rasmussen, K. J. R., “Full-Range Stress-Strain Curves for Stainless Steel Alloys,” Journal of Constructional Steel Research, Vol. 59, No. 1, pp. 47-61, (2002).
23.Von Mises, R., “Mechanik Der Festen Körper in Plastisch-Deformablen Zustand, ” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Vol. 1, pp. 582-592, (1913).
24.Matthews, F. L., and Rawlings, R. D., Composite Materials:Engineering and Science, CRC Press, North America, (1994).
25.詹益梁、王錦華,“再生能源風力發電塔架結構設計之探討”,資源與環境學術研討會(2015)。
26.劉瑞弘、蔡中銘、陳錦城,“風力機故障原因分析-以台中Z 72機組為例”,台灣風能協會會員大會暨學術研討會(2016)。
27.沈崇聖,風力發電機組異常振動分析,碩士論文,國立中興大學,台中(2015)。
28.游明達,台灣風場開發之研究,博士論文,國立臺北科技大學,臺北(2013)。
29.吳穎涵,鋼筋混凝土構造新型碳纖維補強技術之試驗與分析,博士論文,國立臺北科技大學,臺北(2013)。
30.https://www.sharcnet.ca/Software/Ansys/
論文全文使用權限:同意授權於2021-08-13起公開