現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:含鋼板之高強度鋼筋混凝土剪力牆連接梁耐震行為研究 [以論文名稱查詢館藏系統]
論文英文名稱:Study on Seismic Behavior for Steel Plate Embedded High Strength Reinforced Concrete Coupling Beams of Shear Walls [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:楊松逸
英文姓名:Yang, Sung-Yi
研究生學號:105428053
學位類別:碩士
語文別:中文
口試日期:2018/07/16
論文頁數:209
指導教授中文名:黃昭勳;林敏郎
口試委員中文名:黃昭勳;林敏郎;黃世建;鄭敏元
中文關鍵詞:連接梁剪力鋼板剪力容量剪力釘鋼板用量
英文關鍵詞:coupling beamsshear steel plateshear capacityshear studssteel plate ratio
論文中文摘要:先前研究指出連接梁內置剪力鋼板能提升強度與勁度,鋼板錨定長度能控制鋼板彎矩強度發展,在鋼板無剪力釘情況下,鋼板與混凝土間無任何傳力機制,造成鋼板無法充分提升梁身剪力容量,梁體受力變形大時,強度快速衰降且核心混凝土擠碎。本研究主要探討在鋼板上開孔配置側向繫筋加強鋼板和混凝土複合對連接梁耐震行為影響,並提出鋼板用量之設計方法。
本研究設計五座高強度鋼筋混凝土連接梁試體,以內置鋼板、添加剪力釘、跨深比與鋼板用量為主要設計變數。實驗結果顯示內置鋼板並配置側向繫筋能提升梁體剪力容量,且破壞模式由剪力破壞轉變為撓曲破壞,鋼板開孔配置側向繫筋能替代剪力釘改善混凝土與鋼板間複合並傳遞剪力,鋼板端部的承壓翼板與加勁板會使錨定區域破壞,造成含鋼板連接梁強度快速衰降。
論文英文摘要:Previous studies have pointed out that coupling beams used shear steel plates can increase the strength and stiffness, and the embedded length can control the moment strength of the steel plate. In the case of steel plate without shear studs, there is no mechanism of force transmission between steel plate and concrete. The steel plate can not increase the shear capacity of the coupling beams. When the coupling beams is deformed, the strength decays rapidly and the core concrete is crushed. The study mainly discusses influence of using lateral rebar to strengthen steel plate-concrete composite on the seismic behavior of coupling beams, and proposed the design method of steel plate ratio.
In this experiment, five high-strength reinforced concrete coupling beam specimens were designed with setting steel plates, adding shear studs, aspect-ratio steel plate ratio and steel plate ratio as the main design variables. The experimental results show that setting the steel plate can increase the strength of the coupling beams, and the failure mode is transformed from shear failure to flexural failure. The lateral rebar can replace shear studs to improve composite effect of steel plate-concrete and transfer shear force. However, the experiment found that the flange and stiffener will destroy the anchoring zone, causing the strength of the coupling beams to decay rapidly.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1研究動機與目的 1
1.2研究內容與方法 5
第二章 文獻回顧 7
2.1剪力連接梁之相關測試研究與結果 7
2.2鋼板端部錨定及設置側向繫筋相關實驗與研究 17
2.3軟化壓拉桿模型 21
第三章 試驗規劃 30
3.1前言 30
3.2試體設計 31
3.3鋼板細部設計 42
3.4試體製作 48
3.5測試佈置 58
3.6量測系統佈置 65
3.7測試步驟 72
第四章 試驗過程與結果 75
4.1前言 75
4.2材料試驗 75
4.3試體載重與位移行為曲線 81
4.4應變計量測 119
4.5裂縫發展與破壞模式 147
第五章 試驗分析與討論 170
5.1前言 170
5.2撓曲與剪力強度之分析與破壞模式預測 173
5.3鋼板對連接梁行為之貢獻 176
5.4鋼板與混凝土複合對連接梁之影響 178
5.5不同跨深比含鋼板連接梁之行為 180
5.6鋼板用量設計之探討 182
5.7鋼板剪力強度之探討 185
第六章 結論與建議 187
6.1結論 187
6.2未來研究與建議 188
參考文獻 190
附錄A 試體設計圖說 194
附錄B 試體CB20SP2剪力容量計算 199
附錄C 剪力釘D區添加量計算 202
附錄D 鋼板錨定長度計算 204
附錄E 側向繫筋D區設置量計算 207
附錄F 鋼板上鋼筋貫穿孔檢核 209
論文參考文獻:[1] Fintel, M., “Shear Walls – An Answer for Seismic Resistance?” Concrete International, American Concrete Institute, 1991, pp. 48-53.
[2] American Institute of Steel Construction (AISC), “Seismic Provisions for Structural Steel Buildings” ANSI/AISC 341-16, AISC Inc., Chicago (IL), 2016.
[3] American Institute of Steel Construction (AISC), “Specification for Structural Steel Buildings” ANSI/AISC 360-16, AISC Inc., Chicago (IL), 2016.
[4] ACI Committee 318, “Building Code Requirements for Structural Concrete (318-14) and Commentary (ACI318R-14)” American Concrete Institute, Farmington Hills, Mich., 2014.
[5] ACI Committee 374, “Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary” American Concrete Institute, Farmington Hills, 2005.
[6] Mander, J. B., Priestley, M. J. N. and Park, R. “Theoretical stress-strain model for confined concrete” J. Struct. Engin., ASCE, vol. 114, No. 8, 1988, pp. 1804-1826.
[7] Kostas Marcakis and Denis Mitchell. “Precast concrete connections with embedded steel members” PCI Journal, March 1981.
[8] Paulay, T., and Binney, J. R., “Diagonally Reinforced Coupling Beams of Shear Walls” Shear in Reinforced Concrete, SP-42, vol. 2, American Concrete Institute, Farmington Hills, Mich., 1974, pp. 579-598.
[9] M.J.N.Priestley and F.Seible., “Design of seismic retrofit measures for concrete and masonry structures” Construction and Building Materials, Vol 9, No 6, December 1995, pp. 365-377.
[10] Kai Zhanga, Amit H.Varma, Sanjeev R. Malushte, Stewart Galloche, “Effect of shear connectors on local buckling and composite action in steel concrete composite walls” Nuclear Engineering and Design, vol. 269, April 2014, pp. 231-239.
[11] F. Leonhardt, W. Andra, H.-P. Andra, et al., “Neues, vorteilhaftes Verbundmittel für Stahlverbund-Tragwerke mit hoher Dauerfestigkeit” Beton-Stahlbetonbau, vol. 82, No. 12, 1987, pp. 325-331.
[12] Shaohua He, Zhi Fang, Yawei Fang, Ming Liu, Liyang Liu, and Ayman S.Mosallam, “Experimental study on perfobond strip connector in steel–concrete joints of hybrid bridges” Journal of Constructional Steel Research, vol. 118, March 2016, pp. 169-179.
[13] Shaohua He, Zhi Fang, and Ayman S. Mosallam, “Push-out tests for perfobond strip connectors with UHPC grout in the joints of steel-concrete hybrid bridge girders” Journal of Constructional Steel Research, vol. 135, 2017, pp. 177-190.
[14] Jane Thorburn L., Kulark, H. L., and Mongomery, C. J., “Analysis of steel plate shear walls” Structural Engineering Report, No. 107, May 1983.
[15] Kent A. Harries, Bingnian Gong, and Bahram M. Shahrooz., “Behavior and Design of Reinforced Concrete, Steel, and Steel‐Concrete Coupling Beams” Earthquake Spectra, vol. 16, No. 4, November 2000, pp. 775-799.
[16] Wan-Shin Park, and Hyun-Do Yun, “Bearing strength of steel coupling beam connections embedded reinforced concrete shear wall” Engineering Structures, vol. 9, July 2006, pp. 1319-1334.
[17] R. K. L. Su and W. Y. Lam, “A unified design approach for plate-reinforced composite coupling beams” Journal of Constructional Steel Research, vol. 65, No. 3, 2009, pp. 675-686.
[18] W.-Y. Lam, R. K.-L. Su, and H.-J. Pam, “Experimental study on embedded steel plate composite coupling beams” Journal of Structural Engineering, vol. 131, No. 8, 2005, pp. 1294-1302.
[19] R. K. L. Su, W. Y. Lam, and H. J. Pam, “Effects of shear connectors on plate-reinforced composite coupling beams of short and medium-length spans” Journal of Constructional Steel Research, vol. 62, 2006, pp. 178–188.
[20] R. K. L. Su, W. Y. Lam, and H. J. Pam, “Behavior of embedded steel plate in composite coupling beams” Journal of Constructional Steel Research, vol. 64, No. 10, 2008, pp. 1112-1128.
[21] Hwang, S. J., and Lee, H. J., “Analytical Model for Predicting Shear Strengths of Interior Reinforced Concrete Beam-Column Joint for Seismic Resistance” , ACI Structural Journal, vol. 97, No 1, January-February 2000, pp. 35-44.
[22] Hwang, S. J., and Lee, H. J., “Strength Prediction for Discontinuity Regions by Softened Strut-and Tie Model” , Journal of Structural Engineering, ASCE, vol. 128, December 2002, pp. 1519-1526.
[23] Erwin Lim, Shyh-Jiann Hwang, Chih-Hung Cheng, and Pin-Yi Lin, “Cyclic Tests of Reinforced Concrete Coupling Beam with Intermediate Span-Depth Ratio” ACI Structural Journal, vol. 113, 2016, pp. 515-524.
[24] Christopher J. Motter, “Large-Scale Testing of Steel Reinforced Concrete (SRC) Coupling Beams” ,Ph.D thesis, UCLA, 2014.
[25] Moehle, J. P., Ghodsi T., Hooper, J. D., Fields, D. C., Gedhada R., “Seismic Design of Cast-in-Place Concrete Special Structural Walls and Coupling Beams” NEHRP Seismic Design Technical Brief, Gaithersburg, MD, 2012.
[26] Lequesne, R. D., “Behavior and Design of High-Performance Fiber-Reinforced Concrete Coupling Beams and Coupled-Wall Systems” Doctoral Dissertation, University of Michigan Ann., Michigan, 2011.
[27] Hsu, T. T. C., “Soften truss model theory for shear and torsion” ACI Structural Journal, Vol. 85, 1988, pp. 624-635.
[28] Leo Panian,S.E. and Nick Bucci,S. E. “SFPUC Headquarters Building An Innovative High Performance Structure” STRUCTURE magazine, April 2013, pp. 30-32.
[29] Sah𝑎̈𝑓𝑒𝑟, K., “Strut-and-Tie Models for the Design of Structural Concrete” Notes of Workshop, Department of Civil Engineering, National Cheng Kung University, Taiwan 1996, pp. 140.
[30] 李宏仁、黃世建,「鋼筋混凝土結構D區域之剪力強度評估-軟化壓拉桿模型簡算法之實例應用」,結構工程,第十七卷,第四期,民國91年,第53-70頁。
[31] 內政部營建署,「鋼結構極限應力設計法規範及解說」,民國99年。
[32] 內政部營建署,「鋼骨鋼筋混凝土構造設計規範與解說」,民國100年。
[33] 鄭志宏,「鋼筋混凝土剪力連接梁反覆載重測試之研究」,碩士論文,國立台灣大學土木工程系,台北,民國99年,指導教授:黃世建博士。
[34] 王亭惟,「鋼筋混凝土剪力連接梁耐震鋼筋配置之探討」,碩士論文,國立台灣大學土木工程系,台北,民國100年,指導教授:黃世建博士。
[35] 張于軒,「鋼筋混凝土剪力牆連接梁鋼筋配置之研究」,碩士論文,國立台灣大學土木工程系,台北,民國101年,指導教授:黃世建博士。
[36] 林秉誼,「鋼筋混凝土剪力牆連接梁耐震配筋之研究」,碩士論文,國立台灣大學土木工程系,台北,民國103年,指導教授:黃世建博士。
[37] 楊善淳,「高強度鋼筋混凝土剪力牆耐震行為之研究」,碩士論文,國立台北科技大學土木工程系,台北,民國102年,指導教授:林至聰、林敏郎博士。
[38] 吳仲凱,「高強度鋼筋混凝土剪力牆耐震配筋之研究」,碩士論文,國立中央大學土木工程系,桃園,民國105年,指導教授:王勇智、林敏郎博士。
[39] 姚本濠,「含鋼板之鋼筋混凝土剪力牆連接梁耐震行為研究」,碩士論文,國立台北科技大學土木工程系,台北,民國106年,指導教授:黃昭勳、林敏郎博士。
[40] 林孝勇,「鋼筋混凝土剪力連接梁之剪力行為與設計」,博士論文,國立台灣大學土木工程系,台北,民國104年,指導教授:黃世建博士。
[41] XTRACT v3.0.1, “Cross-sectional X Structural Analysis of Components” TRC, 2004.
論文全文使用權限:同意授權於2020-08-10起公開