現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:非水溶液電鍍銅鋅薄膜之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Electrodeposition of CuZn film in Non-aqueous Solution [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:黃俊騫
英文姓名:Jun Qian Huang
研究生學號:105788031
學位類別:碩士
語文別:中文
口試日期:2018/07/20
論文頁數:66
指導教授中文名:陳柏均
口試委員中文名:蘇程裕;陳政營
中文關鍵詞:銅鋅合金薄膜擴散阻障層深共晶溶液
英文關鍵詞:Copper-Zincdiffusion barrierdeep eutectic solvent
論文中文摘要:  遵循著摩爾定律下,積體電路不斷的縮小下,在次微米製程中導線線寬在180奈米下時,已經由銅線取代原本所使用的鋁線做為金屬連接材料,然而為了防止銅在製程或者使用期間與矽基板間相互擴散導致元件退化,在銅與矽基材之間沉積出一層厚度均勻且具有高熱穩定性以及良好的界面附著性的擴散阻障層,本實驗利用金屬鋅具有較大的擴散係數以及在升溫時易與二氧化矽產生反應,因為在高溫時擁有較大的驅動力下能與二氧化矽相互作用,自行形成擴散阻障層,以防止銅與矽之間的互相擴散反應。
  本研究利用非水溶液來進行銅鋅薄膜的脈衝電鍍,此非水溶液為深共晶溶液,將銅鋅薄膜沉積於白金基板以及銅基板上,並在真空下進行銅鋅薄膜的熱處理,以觀察金屬鋅與二氧化矽層反應,形成擴散阻障層,銅鋅薄膜以掃描式電子顯微鏡(SEM)觀察銅鋅薄膜的表面以及橫截面,能量散佈光譜儀(EDS)進行銅鋅薄膜的定量及定性分析,X-ray繞射儀(XRD) 進行薄膜中相的分析,.歐傑電子能譜儀(AES)及X射線吸收光譜(XAS)分析薄膜價態以及縱深分析,接下來利用交流阻抗分析(EIS)、循環伏安法(CV)等電化學分析深共晶溶液之電解液的特性以及Hall effect 跟四點探針量測薄膜之電性值。
  本研究結果顯示,利用深共晶溶液當為電解質時在經過12小時後仍然具備著良好的導電性,以及在電解液中銅鋅濃度比例為1:1(Cu:0.006M,Zn:0.006M),電流密度為1.5mA/cm2電鍍時間為30分鐘,可以得到均勻且平坦的薄膜,經由結構分析過後確定為銅、鋅以及氧化心所組成。銅鋅薄膜在400下熱處理1小時後,薄膜中的鋅順利擴散至二氧化矽層,且銅的部分並未變成銅矽化合物,故成功的在深共晶溶液中製備出擴散阻障層。
論文英文摘要:According to the Moore’s law, the feature size of integrated circuit is constantly shrink down. When the line width of aluminum was shrink down to 180nm, it has problem of high resistance, severe RC delay and electromigration effect. The aluminum wire was replaced by copper wire, because the copper wire has a better electric conductivity to improve the above problem. In order to prevent Cu fast diffusion into the silicon layer and the performance of device degradation, a robust diffusion barrier is strongly required. The good diffusion barrier should meet some certain criteria such as uniform thickness, high thermal stability and good adhesion between Cu interconnect and the silicon layer. In the study, Zinc is chosen as the material for self-forming diffusion barrier due to its highly reactive with the silicon layer under elevated temperature. The Cu-Zn alloy film followed by thermal annealing, Zn diffuse to the silicon layer and the Zn-silicate is formed at the interface between Cu interconnect and silicon layer.
  
  In the work, a non-aqueous solution that deep eutectic solvent, were used for the deposition bath. Pulse-current deposition was applied for the co-deposition of copper-zinc film on the Pt wafers and Cu wafers.
論文目次:摘要 i
致謝 v
圖目錄 viii
表目錄 x
一、 前言 1
二、 文獻回顧 3
2.1、擴散阻障層 3
2.1.1、擴散阻障層的機制 3
2.1.2、擴散阻障層的選擇與製備 6
2.1.2.1、擴散阻障層的選擇 6
2.1.2.2、擴散阻障層的製備 8
2.1.3、選擇銅鋅合金的原因 10
2.2、非水溶液電解質 14
2.2.1、離子液體 14
2.2.2、深共晶溶液 16
三、 實驗步驟 21
3.1、實驗設計 21
3.1.1、實驗流程 21
3.1.2、實驗配置 23
3.1.3、實驗藥品與基材 25
3.1.4、實驗儀器 27
3.2、薄膜的特性分析 28
3.2.1、掃描式電子顯微鏡(Scanning Electron Microscope, SEM)、能量散射光譜儀(Energy-Dispersive X-ray Spectroscopy, EDS) 28
3.2.2、X-ray 繞射儀(XRD, X-ray diffraction) 29
3.2.3、歐傑電子能譜儀分析(Auger electron spectrometer, AES) 30
3.2.4、四點探針(Four Point Probe) 30
3.3、電解液性質分析 31
3.3.1、電化學阻抗頻譜法(Electrochemical Impedance Spectroscopy, EIS) 31
3.3.2、循環伏安法(Cyclic Voltammetry, CV) 33
四、 結果與討論 35
4.1、深共晶溶液製備銅鋅合金薄膜 35
4.1.1、不同製備條件對銅鋅合金薄膜的影響 35
4.1.1.1、改變電解液之銅鋅濃度與電鍍之電流密度 35
4.1.1.2、銅鋅薄膜成分組成 48
4.1.2、電解液的電化學分析 49
4.1.2.1、交流阻抗分析 49
4.1.2.2、循環伏安法 53
4.1.3、熱處理對銅鋅合金薄膜的影響 55
4.1.3.1、真空熱處理 55
五、 結論 63
六、 參考文獻 64
論文參考文獻:1. Nguyen, M.P., Y. Sutou, and J. Koike, Diffusion barrier property of MnSixOy layer formed by chemical vapor deposition for Cu advanced interconnect application. Thin Solid Films, 2015. 580: p. 56-60.
2. Kumar, A., M. Kumar, and D. Kumar, Effect of composition on electroless deposited Ni–Co–P alloy thin films as a diffusion barrier for copper metallization. Applied Surface Science, 2012. 258(20): p. 7962-7967.
3. Wong, H., N.M. Shukor, and N. Amin, Prospective development in diffusion barrier layers for copper metallization in LSI. Microelectronics journal, 2007. 38(6-7): p. 777-782.
4. McBrayer, J.D., R. Swanson, and T. Sigmon, Diffusion of metals in silicon dioxide. Journal of the Electrochemical Society, 1986. 133(6): p. 1242-1246.
5. Nicolet, M.-A., Diffusion barriers in thin films. Thin Solid Films, 1978. 52(3): p. 415-443.
6. Nicolet, M.A. and M. Bartur, Diffusion barriers in layered contact structures. Journal of Vacuum Science and Technology, 1981. 19(3): p. 786-793.
7. Nakamura, K., et al., Ti and V layers retard interaction between Al films and polycrystalline Si. Applied Physics Letters, 1976. 28(5): p. 277-280.
8. Ono, H., T. Nakano, and T. Ohta, Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M= Cr, Ti, Nb, MO, Ta, W). Applied Physics Letters, 1994. 64(12): p. 1511-1513.
9. Oku, T., et al., Diffusion barrier property of TaN between Si and Cu. Applied Surface Science, 1996. 99(4): p. 265-272.
10. Arunagiri, T., et al., 5 nm ruthenium thin film as a directly plateable copper diffusion barrier. Applied Physics Letters, 2005. 86(8): p. 083104.
11. Chan, R., et al., Diffusion studies of copper on ruthenium thin film a plateable copper diffusion barrier. Electrochemical and Solid-State Letters, 2004. 7(8): p. G154-G157.
12. Frederick, M., R. Goswami, and G. Ramanath, Sequence of Mg segregation, grain growth, and interfacial MgO formation in Cu–Mg alloy films on SiO 2 during vacuum annealing. Journal of applied physics, 2003. 93(10): p. 5966-5972.
13. Su, Y.-H., et al., Investigation of barrier property of copper manganese alloy on ruthenium. IEEE Transactions on Device and Materials Reliability, 2015. 15(1): p. 47-53.
14. Osaka, T., et al., Electroless nickel ternary alloy deposition on SiO2 for application to diffusion barrier layer in copper interconnect technology. Journal of The Electrochemical Society, 2002. 149(11): p. C573-C578.
15. Zandrahimi, M. Effect of Current Density on Microstructure of Mn-Cu Thin Films via Electroplating Coating Technique. in Advanced Materials Research. 2014. Trans Tech Publ.
16. Chiang, W.-S., et al., Formation of Cu/MnOx composite film by concurrent electroplating and electrophoresis in an organic solvent. Thin Solid Films, 2018.
17. Joi, A., R. Akolkar, and U. Landau, Pulse Electrodeposition of Copper-Manganese Alloy for Application in Interconnect Metallization. Journal of The Electrochemical Society, 2013. 160(12): p. D3145-D3148.
18. Xie, X., et al., Electrodeposition behavior and characterization of copper–zinc alloy in deep eutectic solvent. Journal of Applied Electrochemistry, 2017. 47(6): p. 679-689.
19. Koike, J., et al. Cu alloy metallization for self-forming barrier process. in Interconnect Technology Conference, 2006 International. 2006. IEEE.
20. Kuper, A., et al., Diffusion in ordered and disordered copper-zinc. Physical Review, 1956. 104(6): p. 1536.
21. Peterson, N. and S. Rothman, Diffusion and Correlation Effects in Copper-Zinc Alloys. Physical Review B, 1970. 2(6): p. 1540.
22. Overbury, S., P. Bertrand, and G. Somorjai, Surface composition of binary systems. Prediction of surface phase diagrams of solid solutions. Chemical reviews, 1975. 75(5): p. 547-560.
23. Barron, J.C., The electrochemistry of Zn in deep eutectic solvents. 2010, University of Leicester.
24. Azakami, T. and A. Yazawa, Activity measurements of liquid copper binary alloys. Canadian metallurgical quarterly, 1976. 15(2): p. 111-122.
25. Wilkes, J.S., et al., Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry, 1982. 21(3): p. 1263-1264.
26. Wilkes, J.S. and M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 1992(13): p. 965-967.
27. Zhang, Q., et al., Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 2012. 41(21): p. 7108-7146.
28. Smith, E.L., A.P. Abbott, and K.S. Ryder, Deep eutectic solvents (DESs) and their applications. Chemical reviews, 2014. 114(21): p. 11060-11082.
29. Gill, I. and E. Vulfson, Enzymic catalysis in heterogeneous eutectic mixtures of substrates. Trends in biotechnology, 1994. 12(4): p. 118-122.
30. Abbott, A.P., et al., Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 2003(1): p. 70-71.
31. Hurley, F.H. and T.P. Wier, Electrodeposition of metals from fused quaternary ammonium salts. Journal of the Electrochemical Society, 1951. 98(5): p. 203-206.
32. Abbott, A.P., et al., Ionic liquid analogues formed from hydrated metal salts. Chemistry-A European Journal, 2004. 10(15): p. 3769-3774.
33. Chiang, W.-S., et al., Pulse electrodeposition of copper-manganese alloy in deep eutectic solvent. Journal of Alloys and Compounds, 2018. 742: p. 38-44.
34. Paiva, A., et al., Natural deep eutectic solvents–solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2014. 2(5): p. 1063-1071.
35. Ribeiro, D., C. Souza, and J. Abrantes, Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete. Revista IBRACON de Estruturas e Materiais, 2015. 8(4): p. 529-546.
36. Diard, J., B. Le Gorrec, and C. Montella, Handbook of electrochemical impedance spectroscopy. Diffusion Impedances. www. bio-logic. info/potentiostat/notes. html, 2012.
37. Nishida, T., Y. Tashiro, and M. Yamamoto, Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. Journal of Fluorine Chemistry, 2003. 120(2): p. 135-141.
38. Costa, R., et al., Electrochemical double layer at the interfaces of Hg/choline chloride based solvents. Electrochimica Acta, 2010. 55(28): p. 8916-8920.
39. Chen, S.-T. and G.-S. Chen, Electroless plating of low-resistivity Cu–Mn alloy thin films with self-forming capacity and enhanced thermal stability. Journal of Alloys and Compounds, 2015. 648: p. 474-480.
論文全文使用權限:同意授權於2023-08-09起公開