現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:自發性聚對二甲苯選擇性沉積應用於神經刺激晶片之封裝 [以論文名稱查詢館藏系統]
論文英文名稱:Simultaneously Poly-p-xylene selective deposition of a package applied to a nerve stimulation chip [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:林品成
英文姓名:Pin-Cheng Lin
研究生學號:105788020
學位類別:碩士
語文別:中文
口試日期:2018/07/23
論文頁數:58
指導教授中文名:陳柏均
口試委員中文名:陳適範;陳賢燁
中文關鍵詞:黃光微影聚對二甲苯生物相容性微晶片選擇性沉積
英文關鍵詞:PhotolithographyParylene CBiocompatibilityMicrochipSelective deposition
論文中文摘要:在本實驗中,我們為了要解決傳統封裝方式所造成之不便和影響,例如反應式離子蝕刻所造成表面粗糙化和製程複雜等,我們利用了通電後表面能的提高來做為抑制我們高分子薄膜單體的成核,進而提高製程速度和降低影響,結合黃光微影、聚對二甲苯(Parylene C)與生物刺激電極(銥Ir),應用於植入式刺激元件以及製備出提供測量之仿製線路。
透過電子顯微鏡來觀察表面形貌,EDS可以觀察到在電極分布區域因為有電場存在所以不會偵測到聚對二甲苯所含氯的訊號,傅里葉轉換紅外光譜指出在通電後在試片的表面上沒有-C-Cl和-C-H官能基的出現,紫外-可見光光譜儀顯示出薄膜在可見光區域內其穿透率都高於90%,原子力顯微鏡可觀察到隨著我們薄膜厚度的增加表面形貌會逐漸趨向大顆粒的團聚,且表面粗糙度提高。最後利用晶片照射可見光產生電位來做出選擇性沉積完成生物刺激晶片封裝,本研究之結果可用為植入式生醫電子元件和生物晶片檢測之大量需求。
論文英文摘要:In this experiment, in order to solve the inconvenience and impact caused by the traditional encapsulation methods, such as reactive ion etching caused by the rough surface and complicated process, we used the increase of the surface energy after electrification as the inhibition of our polymer film monomers.
The nucleation of thin film monomers improves the process speed and reduces the impact. It combines photolithography, parylene C and bio-stimulated electrodes. It is applied to implanted stimulators and prepares imitations for replica circuit.
We observed the surface morphology through an optical microscope and a scanning electron microscope. Energy-dispersive X-ray spectroscopy could observe that there was no electric field in the poly-p-xylylene due to the presence of an electric field in the electrode distribution area.
Fourier transform infrared spectroscopy indicates that there is no appearance of -C-Cl and -C-H on the surface of the test piece after charge.
The UV-Vis spectrometer showed that the transmittance of the film in the visible light region was higher than 90%.
Atomic force microscopy can observe that as our film thickness increases, the surface morphology will gradually tend to agglomerate with large particles, and the surface roughness will increase.
Finally, wafers are irradiated with visible light to generate a potential for selective deposition to complete the bio-stimulated wafer packaging. The results of this study can be used for a large number of implanted biomedical electronic components and bio-wafer detection.
論文目次:目錄

摘要................................................................i
Abstract...........................................................ii
致謝...............................................................iv
目錄................................................................vi
圖目錄...........................................................ix
表目錄.............................................................xii
第一章 緒論.........................................................1
1.1 前言.........................................................1
1.2 功能性聚對二甲苯 ............................................2
1.3 研究動機.....................................................3
第二章 文獻回顧....................................................4
2.1黃光微影.....................................................4
2.1.1電漿蝕刻.................................................4
2.1.2光阻剝離技術(Lift off) ..................................5
2.2鍍膜技術.....................................................6
2.2.1化學氣相沉積(Chemical Vapor Deposition) .................6
2.2.2 Poly(dichloro-p-xylylene)-co-(p-xylylene):PPX-C.........6
2.2.3物理氣相沉積(Physical vapor deposition) .................7
2.2.4氧化銥(Iridium Oxide) ...................................8
2.3薄膜表面性質...........................................9
2.3.1 穿透和反射率............................................9
2.3.2 表面粗糙度 .............................................10
2.3.3 接觸角.................................................11
2.3.4 薄膜鍵結分析...........................................13
2.3.5 成分分析..............................................14
2.4選擇性沉積................................................15
2.4.1選擇性沉積形成機制....................................15
2.4.2選擇性沉積與沉積速率之影響............................16
第三章 材料和方法.................................................18
3.1製程設備及分析儀器簡介....................................18
3.2元件結構 .................................................23
3.3實驗流程..................................................24
3.3.1 仿製線路.............................................24
3.3.1.1試片前處理..........................................24
3.3.1.2黃光製程(曝光與顯影) ...............................24
3.3.1.3金屬層製備及Lift-off................................26
3.3.1.4施加電荷與沉積聚對二甲苯............................27
3.3.2 實際晶片...............................................29
3.3.2.1利用可見光照射施行晶片封裝........................29
3.3.2.2晶片之工作原理..........................................31
第四章 結果與討論.................................................32
4.1薄膜性質...................................................32
4.1.1 表面形貌觀察 ..........................................32
4.1.2 聚對二甲苯薄膜之光學穿透性.............................34
4.1.3 聚對二甲苯薄膜粗糙度之探討.............................36
4.2選擇性沉積................................................38
4.2.1 各基板通電前後對於聚對二甲苯沉積比較...................38


4.2.2通電後各基板所能抑制沉積的厚度限制......................40
4.2.3 圖形化之選擇性沉積.....................................43
4.2.4 選擇性沉積後之表面親疏水性探討.........................49
4.3選擇性沉積封裝神經刺激晶片之實際應用........................50
第五章 結論................................................54
第六章 參考文獻...................................................55
論文參考文獻:1. Schwarz, M., et al. Micro implantable visual prostheses. in Microtechnologies in Medicine and Biology, 1st Annual International, Conference On. 2000. 2000. IEEE.
2. Meyer, J.-U., et al., High density interconnects and flexible hybrid assemblies for active biomedical implants. IEEE Transactions on Advanced Packaging, 2001. 24(3): p. 366-374.
3. Hassler, C., et al., Characterization of parylene C as an encapsulation material for implanted neural prostheses. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010. 93(1): p. 266-274.
4. Bera, M., et al., Comparison of the photodegradation of parylene C and parylene N. European Polymer Journal, 2000. 36(9): p. 1765-1777.
5. Fong, S. and J. Peters, Investigation of Polybenzocyclobutene Resins in Multilayer Thin Films for Electronic Packaging. 1991, WRIGHT RESEARCH AND DEVELOPMENT CENTER WRIGHT-PATTERSON AFB OH ELECTRO-OPTICSBRANCH.
6. Yamagishi, F.G., Investigations of plasma-polymerized films as primers for Parylene-C coatings on neural prosthesis materials. Thin Solid Films, 1991. 202(1): p. 39-50.
7. Maylon, S.T.I. and J.L. Williams, Barrier coating on blood contacting devices. 1991, Google Patents.
8. Rodger, D.C., et al., Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensors and Actuators B: chemical, 2008. 132(2): p. 449-460.
9. Zhang, X.-S., et al., Fabrication and characterization of the functional parylene-C film with micro/nano hierarchical structures. Microelectronic Engineering, 2015. 141: p. 72-80.
10. Trantidou, T., et al., Selective hydrophilic modification of Parylene C films: a new approach to cell micro-patterning for synthetic biology applications. Biofabrication, 2014. 6(2): p. 025004.
11. Li, W., et al., Wafer-level parylene packaging with integrated RF electronics for wireless retinal prostheses. Journal of Microelectromechanical Systems, 2010. 19(4): p. 735-742.
12. Hsu, J.-M., et al. Characterization of Parylene-C film as an encapsulation material for neural interface devices. in Conference on Multi-Material Micro Manufacture. 2007.
13. Humayun, M.S., E. de Juan Jr, and R.J. Greenberg, Visual prosthesis and method of using same. 1999, Google Patents.
14. Rizzo III, J.F. and J. Wyatt, REVIEW■: Prospects for a Visual Prosthesis. The Neuroscientist, 1997. 3(4): p. 251-262.
15. Liu, W., et al., Electronic visual prosthesis. Artificial organs, 2003. 27(11): p. 986-995.
16. Veraart, C., et al., Pattern recognition with the optic nerve visual prosthesis. Artificial organs, 2003. 27(11): p. 996-1004.
17. Humayun, M.S., et al., Visual Perception Elicited by Electrical Stimulation of Retina in Blind Humans. Archives of Ophthalmology, 1996. 114(1): p. 40-46.
18. Van Zant, P. and P. Chapman, Microchip fabrication: a practical guide to semiconductor processing. Vol. 5. 2000: McGraw-Hill New York.
19. Bouwknegt, M., et al., Estimation of hepatitis E virus transmission among pigs due to contact-exposure. Veterinary research, 2008. 39(5): p. 1.
20. Bok, C.K., et al., Overcoating composition for photoresist and method for forming photoresist pattern using the same. 2005, Google Patents.
21. Thompson, L.F., An introduction to lithography. 1983, ACS Publications.
22. Flamm, D.L. and O. Auciello, Plasma deposition, treatment, and etching of polymers: the treatment and etching of polymers. 2012: Elsevier.
23. Fredericks, E.C. and H.N. Kotecha, Photoresist lift-off process for fabricating semiconductor devices. 1986, Google Patents.
24. Shaw, J.M., et al., Negative photoresists for optical lithography. IBM journal of Research and Development, 1997. 41(1.2): p. 81-94.
25. Preiss, E.M., A. Krauss, and H. Seidel, Sputtered Pt electrode structures with smoothly tapered edges by bi-layer resist lift-off. Thin Solid Films, 2015. 597: p. 158-164.
26. Fortin, J.B. and T.-M. Lu, Chemical vapor deposition polymerization: the growth and properties of parylene thin films. 2003: Springer Science & Business Media.
27. Yarbrough, W.A. and R. Messier, Current issues and problems in the chemical vapor deposition of diamond. Science, 1990. 247(4943): p. 688-696.
28. Lötters, J.C., et al., The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. Journal of micromechanics and microengineering, 1997. 7(3): p. 145.
29. Alami, J., et al., Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005. 23(2): p. 278-280.
30. Mahan, J.E., Physical vapor deposition of thin films. Physical Vapor Deposition of Thin Films, by John E. Mahan, pp. 336. ISBN 0-471-33001-9. Wiley-VCH, January 2000., 2000: p. 336.
31. Greiner, J., Oxidation of lead films by rf sputter etching in an oxygen plasma. Journal of Applied Physics, 1974. 45(1): p. 32-37.
32. Narayan, J., et al., Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition. Applied physics letters, 1992. 61(11): p. 1290-1292.
33. Lugscheider, E., et al., Comparison of the structure of PVD-thin films deposited with different deposition energies. Surface and Coatings Technology, 1996. 86: p. 177-183.
34. Knotek, O. and T. Leyendecker, On the structure of (Ti, Al) N-PVD coatings. Journal of Solid State Chemistry, 1987. 70(2): p. 318-322.
35. Cherevko, S., et al., Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catalysis Today, 2016. 262: p. 170-180.
36. Ito, S., et al., Electrochromic properties of iridium oxide thin films prepared by reactive sputtering in O2 or H2O atmosphere. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2015. 33(4): p. 041204.
37. Kim, T.Y., S.A. Hong, and S. Yang, A solid-state thin-film Ag/AgCl reference electrode coated with graphene oxide and its use in a pH sensor. Sensors, 2015. 15(3): p. 6469-6482.
38. Mattinen, M., et al., Nucleation and conformality of iridium and iridium oxide thin films grown by atomic layer deposition. Langmuir, 2016. 32(41): p. 10559-10569.
39. Ullah, N. and S. Omanovic, Large charge-storage-capacity iridium/ruthenium oxide coatings as promising material for neural stimulating electrodes. Materials Chemistry and Physics, 2015. 159: p. 119-127.
40. Ioroi, T., et al., Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2000. 147(6): p. 2018-2022.
41. Weiland, J.D., D.J. Anderson, and M.S. Humayun, In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE transactions on biomedical engineering, 2002. 49(12): p. 1574-1579.
42. Jeong, Y., et al., UV–visible and infrared characterization of poly (p-xylylene) films for waveguide applications and OLED encapsulation. Synthetic Metals, 2002. 127(1-3): p. 189-193.
43. Wenzel, R.N., Surface roughness and contact angle. The Journal of Physical Chemistry, 1949. 53(9): p. 1466-1467.
44. Patir, N. and H. Cheng, An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. Journal of lubrication Technology, 1978. 100(1): p. 12-17.
45. Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. The Journal of Chemical Physics, 1978. 69(9): p. 4159-4161.
46. White, N., et al., Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films. Applied Surface Science, 2014. 292: p. 74-85.
47. Kačuráková, M. and M. Mathlouthi, FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohydrate research, 1996. 284(2): p. 145-157.
48. Vallet‐Regí, M., et al., XRD, SEM‐EDS, and FTIR studies of in vitro growth of an apatite‐like layer on sol‐gel glasses. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, 1999. 44(4): p. 416-421.
49. Vaeth, K.M. and K.F. Jensen, Transition metals for selective chemical vapor deposition of parylene-based polymers. Chemistry of materials, 2000. 12(5): p. 1305-1313.
50. Wu, C.-Y., et al., Electrically charged selectivity of poly-para-xylylene deposition. Chemical Communications, 2016. 52(14): p. 3022-3025.
論文全文使用權限:不同意授權