現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:應用SWMM 與 HSPF 模式於水庫集水區水質總量管制之探討 [以論文名稱查詢館藏系統]
論文英文名稱:Application of SWMM and HSPF Models on Reservoir Water Quatily Management [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災博士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:蔡玲儀
英文姓名:Lin-Yi Tsai
研究生學號:101429001
學位類別:博士
語文別:中文
口試日期:2018/07/05
論文頁數:98
指導教授中文名:林鎮洋
指導教授英文名:Jen-Yang Lin
口試委員中文名:李公哲;康世芳;游景雲;何嘉浚;陳起鳳
中文關鍵詞:總量管制(TMDL)敏感度分析超越機率HSPFSWMM
英文關鍵詞:total maximum daily loads (TMDLs)sensitivity analysisexceedance probabilityHSPFSWMM
論文中文摘要:總量管制(Total Maximum Daily Load , TMDL)策略牽涉到相當多的層面,其關鍵工作為水質水體水質模式模擬與涵容能力分析。SWMM與HSPF 為國內外廣泛應用之水質模式,本研究以翡翠水庫集水區為例,以LH-OAT(Latin Hypercube–One factor At a Time)對於水文參數進行敏感度分析,二模式均顯示與土壤及入滲相關參數敏感度最高。SWMM模式主要應用於都市排水模擬,惟本研究應用於以林地為主之集水區,經率定驗證判定模式適合度,與HSPF 模式相當。在水質模擬部分,HSPF 對於懸浮固體物模擬結果較佳;至於總磷模擬結果, HSPF會高估,而SWMM較接近觀測值。總磷為水庫汙染總量管制之目標汙染物,水庫水質涵容能力決定必須要考量環境風險。超越機率(Exceedance Probability)方法結合水庫水質評估模式及流量統計,可應用於總量管制目標決定。本研究以符合水體水質標準(總磷20μg/L下),現況總磷可符合此標準,以超越機率90%對應允許總磷流入水庫之汙染總量及TMDL計算,發現翡翠水庫集水區需削減580 kg/ year( 4%)總磷排放。因此雖然現階段翡翠水庫水質良好,但沒有允許新增汙染的空間。因應氣候變遷強化風險管理,未來倘若考量以維持水庫貧養為總量管制目標,建議以超越機率50%對應為容許汙染總量,確保水資源永續利用。
論文英文摘要:Estimation of the waterbodys loading capacity and pollutant loading from all sources to the waterbody are critical steps during the TMDL process. The Hydrological Simulation Program-Fortran (HSPF) model and Storm Water Management Model (SWMM) were applied to simulate the flow and water quality in the Feisui reservoir watershed. Statistical analysis showed that both models are suitable for the studied watershed, but the performances of the flow and water quality simulations are different. The low flow and suspended solid (SS) loads simulated by HSPF model performed better, possibly because the soil in the study area is highly permeable, and the HSPF model has more precise soil layer calculations. As for the total phosphorus (TP) simulation results, the result from SWMM is closer to the observations, while the HSPF is overestimated. The Latin Hypercube-One factor At a Time (LH-OAT) method was used to determine the parameter sensitivity of the HSPF model and SWMM. In both of the models, the parameters related to infiltration and soil characteristics strongly affected the flow simulation.
TP is the target pollutant and the water quality concentration is typically consistent with water quality standards; however, it is difficult to determine which flow state to use, especially for lakes and reservoirs. In this study, an exceedance probability method was established to determinine the TMDL for reservoirs. The SWMM was used to understand the pollution loads from the watershed, and the Vollenweider model was used to simulate the total phosphorous (TP) concentrations in the reservoir. Using the validated Vollenweider model, the relationship between pollution loads and the target TP concentration is illustrated. This relationship is associated with real changes in the reservoir water volume and is presented as the exceedance probability. In this study, two scenarios, TP concentration of 20μg/L in accordance with the water quality standard, and TP concentration of 10μg/L to maintain the reservoir as oligotrophic of eutrophication states were implemented. At present, the TP can meet the water quality standard, an exceedance probability of 90% is suggested, and 580 kg/year (4%) of TP pollutants are needed to be reduced after the TMDL calculation. In order to strengthen risk management in response to climate change, maintain the reservoir water quality as oligotrophic states, an exceedance probability of 50% is recommended to ensure the sustainability of water resources.
論文目次:中文摘要 i
英文摘要 iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究內容及流程 2
第二章 文獻回顧 5
2.1非點源污染與水質模式 5
2.2 模式參數敏感度分析 7
2.2.1 敏感度分析方法 7
2.2.2 HSPF及SWWM水文模擬參數 9
2.3 水庫集水區汙染總量管制 10
2.3.1 水庫涵容能力計算 12
第三章 研究方法 15
3.1 研究區域 15
3.1.1 地理環境 15
3.1.2氣象、水文及水質 19
3.2 水質模式介紹 25
3.2.1 集水區管理系統(BASINS) 25
3.2.2 HSPF模式 26
3.2.3 SWMM模式 36
3.2.4 水庫水質Vollenweider 模式 40
3.3 模式建立與適合度判定方法 42
3.3.1 模式建立 42
3.3.2模式適合度判定 43
3.4 參數敏感度分析 45
3.4.1 拉丁超立方採樣(Latin–Hypercube sampling ) 46
3.4.2 LH-OAT敏感度分析分法 47
3.4.3 HSPF 及SWMM 水文參數篩選 48
3.5 水庫水質總量管制 52
第四章 結果與討論 56
4.1 模式建立 56
4.2 水文參數敏感度分析 58
4.2.1 HSPF 模式 58
4.2.2 SWMM 模式 62
4.3 模式模擬結果 63
4.3.1 模式率定驗證 63
4.3.2 模擬結果比較 71
4.4. 水庫集水區汙染總量管制 77
4.4.1 集水區模式建立與模擬 77
4.4.2 Vollenweider 模式建立 79
4.4.3總量管制目標設定 80
4.4.4 最大涵容總量決定 82
4.4.5 汙染總量削減與分配探討 87
第五章 結論與建議 89
5.1 結論 89
5.2 建議 91
參考文獻 92
論文參考文獻:1.Al-Abed, N.A.; Whiteley, H.R. Calibration of the Hydrological Simulation Program Fortran (HSPF) Model Using Automatic Calibration and Geographical Information Systems. Hydrol. Process. 2002, 16, 3169–3188.
2.Atkins, J.T., Jr.; Wiley, J.B.; Paybins, K.S. Calibration Parameters Used to Simulate Streamflow from Application of the Hydrologic Simulation Program FORTRAN Model (HSPF) to Mountainous Basins Containing Coal Mines in West Virginia; Scientific Investigations Report 2005-5099; USGS: Reston, VA, USA, 2005.
3.Barco, J.;Wong, K.M.; Michael, K.; Stenstrom, F. Automatic Calibration of the U.S. EPA SWMM Model for a Large Urban Catchment. J. Hydraul. Eng. 2008, 34, 466–474
4.Beling, F.A.; Garcia, J.I.B.; Paiva, E.M.C.D.; Bastos, G.A.P.; Paiva, J.B.D. Analysis of the SWMM Model Parameters for Runoff Evaluation in Periurban Basins from Southern Brazil. In Proceedings of the 12nd International Conference on Urban Drainage, Porto Alegre, Brazil, 11–16 September 2011.
5.Beling, F.A.; Garcia, J.I.B.; Paiva, E.M.C.D.; Bastos, G.A.P.; Paiva, J.B.D. Analysis of the SWMM Model Parameters for Runoff Evaluation in Periurban Basins from Southern Brazil. In Proceedings of the 12nd International Conference on Urban Drainage, Porto Alegre, Brazil, 11–16 September 2011.
6.Bolstad, P. V. and Swank, W. T., “cumulative impacts of landuse on water quality in a southern appalachian watershed,” Journal of the American Water Resources Association, vol. 33, no. 3, 1997, pp. 519-533.
7.Borah, D.K.; Yagow, G.; Saleh, A.; Barnes, P.L.; Rosenthal,W.; Krug, E.C.; Hauck, L.M. Sediment and nutrient modeling for TMDL development implementation. Trans. ASABE, 2006, 49, 967–986
8.Boyacioglu, H.; Alpaslan, M.N. Total maximum daily load (TMDL) based sustainable basin growth and management strategy. Environ. Monit. Assess. 2008, 146, 411–421
9.Choi, W.; Deal, B.M. Assessing hydrological impact of potential land use change through hydrological and land use change modeling for the Kishwaukee River basin (USA). J. Environ. Manag. 2008, 88, 1119–1130.
10.Chung, E.S.; Lee, K.S. Prioritization of water anagement for sustainability using hydrologic simulation model and multicriteria decision making techniques. J. Environ. Manag. 2009, 90, 1502–15
11.DePinto, J.V.; Freedman, P.L.; Dilks, D.M.; Larson, W.M. Models quantify the total maximum daily load process. J. Environ. Eng. 2004, 130, 703–713.
12.Di Modugno, M.; Gioia, A.; Gorgoglione, A.; Iacobellis, V.; la Forgia, G.; Piccinni, A.F.; Ranieri, E. Build-up/Wash-Off Monitoring and Assessment for Sustainable Management of First Flush in an Urban Area. Sustainability, 2015, 7, 5050–5070.
13.Dilks David W.; Canale Raymond P.; Meier Peter G.; Development of Bayesian Monte Carlo techniques for water quality model uncertainty, Ecological Modelling, 62 (1992) 149-162
14.Donigian, A.J. Watershed model calibration and validation: The HSPF experience. Proc. Water Environ. 2002, 8, 44–73.
15.Elshorbagy, A.; Teegavarapu, R.S.V.; Ormsbee, L. Total maximum daily load (TMDL) approach to surface water quality management: Concepts, issues, and applications. Can. J. Civ. Eng. 2005, 32, 442–448.
16.Fonseca, A. Watershed model parameter estimation and uncertainty in data-limited environments. Environ. Model. Softw. 2014, 51, 84–93.
17.Gaddis, E.J.B.; Voinov, A. Spatially explicit modeling of land use specific phosphorus transport pathways to improve TMDL load estimates and implementation planning. Water Resour. Manag. 2010, 24, 1621–1644.
18.Gulati, S.; Stubblefield, A.A.; Hanlon, J.S.; Spier, C.L.; Stringfellow, W.T. Use of continuous and grab sample data for calculating total maximum daily load (TMDL) in agricultural watersheds. Chemosphere, 2014, 99, 81–88.
19.Havens, K.E.; Walker, W.W. Development of a total phosphorus concentration goal in the TMDL process for Lake Okeechobee, Florida (USA). Lake Reserv. anag. 2002, 18, 227–238.
20.Holvoet, K.; van Griensven, A.; Seuntjens, P.; Vanrolleghem, P.A. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Phys. Chem. Earth, 2005, 30, 518–526.
21.Hunter, H.M.; Walton, R.S. Land-use effects on fluxes of suspended sediment, nitrogen and phosphorus from a river catchment of the Great Barrier Reef, Australia. J. Hydrol. 2008, 356, 131–146.
22.Kang, M.S.; Park, S.W.; Lee, J.J.; Yoo, K.H. Applying SWAT for TMDL programs to a small watershed containing rice paddy fields. Agric. Water Manag. 2006, 79, 72–92.]
23.Kirchner, W.B.; Dillon, P.J. An empirical method of estimating the retention of phosphorus in lakes. Water Resour. Res. 1975, 11, 182–183.
24.Kourgialas, N.N.; Karatzas, G.P.; Nikolaidi, N.P. An integrated framework for the hydrologic simulation of a complex geomorphological river basin. J. Hydrol. 2010, 381, 308–321.
25.Lee, S. B., Yoon, C. G., Jung, K. W., Hwang, H. S., Comparative evaluation of runoff and water quality using HSPF and SWMM. Water Science and Technology, vol. 62, 2010, pp 1401-1409.
26.Lee, S. B., Yoon, C. G., Jung, K. W., Hwang, H. S., Comparative evaluation of runoff and water quality using HSPF and SWMM. Water Science and Technology, vol. 62, 2010, pp 1401-1409.
27.Leslie Shoemaker, Ting Dai, and Jessica Koenig, TMDL Model Evaluation and Research Needs, EPA/600/R-05/149 November 2005
28.Lewis, E. B. (1982) Control of body segment differentiation in Drosophila by the bithorax gene complex, Embryonic Development, Part A: Genetics Aspects, Edited by Burger, M. M. and R. Weber. Alan R. Liss
29.Li, C.; Wang, W.; Xiong, J.; Chen, P. Sensitivity Analysis for Urban Drainage Modeling Using Mutual Information. Entropy, 2014, 16, 5738–5752.
30.McCuen, R. ”Accuracy Assessment of Peak Discharge Models,” Journal of Hydrologic Engineering, vol. 10, no. 1, 2005, pp. 16-22.
31.Morris, M.D. Fractional sampling plants for preliminary computational experiments. Technometrics 1991, 33, 161–174.
32.Moynihan, K.; Vasconcelos, J. SWMM Modeling of a Rural Watershed in the Lower Coastal Plains of the United States. J. Water Manag. Model. 2014.
33.Muleta, M.K. Comparison of Model Evaluation Methods to Develop a Comprehensive Watershed Simulation Model. In Proceedings of the 2010 Conference of the Environmental and Water Resources Institute, Palm Springs, CA, USA, 16 May 2010; pp. 2492–2501.
34.Muttil, N.; Jayawardena, A.W. Shuffled complex evolution model calibrating algorithm: Enhancing its robustness and efficiency. Hydrol. Process. 2008, 22, 4628–4638.
35.Nasr, A.; Bruen, M.; Jordan, P.; Moles, R.; Kiely, G.; Byrne, P. A comparison of SWAT, HSPF and SHETRAN/GOPC for modeling phosphorus export from three catchments in Ireland. Water Res. 2007, 41, 1065–1073
36.Nasr, A.; Bruen, M.; Jordan, P.; Moles, R.; Kiely, G.; Byrne, P. A comparison of SWAT, HSPF and SHETRAN/GOPC for modeling phosphorus export from three catchments in Ireland. Water Res. 2007, 41, 1065–1073.
37.National Research Council (NRC). Assessing the TMDL Approach to Water Quality Management; Committee to Assess the Scientific Basis of the Total Maximum Daily Load Approach to Water Pollution Reduction; Water Science and Technology Board, Washington, DC, USA, 2001.
38.Nossent, J.; Bauwens, W. Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling. Water Sci. Technol. 2012, 65, 539–549.
39.Pretorius, H.; James, W.; Smit, J. A Strategy for Managing Deficiencies of SWMM Modeling for Large Undeveloped Semi-Arid Watersheds. J. Water Manag. Model. 2013, R246–R301.
40.Seong, C.; Her, Y.; Benham, B.L. Automatic Calibration Tool for Hydrologic Simulation Program-FORTRAN Using a Shuffled Complex Evolution Algorithm. Water. 2015, 7, 503–527.
41.Seong, C.; Her, Y.; Benham, B.L. Automatic Calibration Tool for Hydrologic Simulation Program-FORTRAN Using a Shuffled Complex Evolution Algorithm. Water, 2015, 7, 503–527.
42.Steinman, A.D.; Ogdahl, M.E. TMDL reevaluation: Reconciling internal phosphorus load reductions in a eutrophic lake. Lake Reserv. Manag. 2015, 31, 115–126.
43.Steinman, Alan D; Ogdahl, Mary E. TMDL reevaluation: reconciling internal phosphorus load reductions in a eutrophic lake, Lake and Reservoir Management, 2015, Volume 31, 115-126
44.Talbot, M.; McGuire, O.; Olivier, C.; Flemin, R. Parameterization and application of agricultural best management practices in a rural Ontario watershed using PCSWMM. J.Water Manag. Model. 2016.
45.Temprano, J.; Arango, Ó.; Cagiao, J.; Suárez, J.; Tejero, I. Stormwater quality calibration by SWMM: A case study in Northern Spain. Water SA 2005, 32, 55–63.
46.U.S. EPA. In Environmental Protection Agency. Storm Water Management Model Users Manual Version 5.1: EPA/600/R-14/413b ashington, DC, USA, Revised September 2015
47.United States Environmental Protection Agency (USEPA). Protocol for Developing Pathogen TMDLs; EPA 841-R-00-002; Office ofWater (4503F):Washington, DC, USA, 2001.
48.US EPA, 2015, BASINS 4.1 (Better Assessment Science Integrating point & Non-point Sources) Modeling Framework. National Exposure Research Laboratory, RTP, North Carolina. /exposure-assessment-models/basins
49.USEPA,(1999), Protocol for Developing Nutrient TMDLs
50.Van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, A.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23.
51.Van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, A.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23.
52.Wang, C.; Bi, J.; Ambrose, R.B. Development and application of mathematical models to support total maximum daily load for the Taihu Lake’s influent rivers, China. Ecol. Eng. 2015, 83, 258–267.
53.Xu, Z.; Godrej, A.N.; Grizzard, T.J. The hydrological calibration and validation of a complexly-linked5 watershed–reservoir model for the Occoquan watershed, Virginia. J. Hydrol. 2007, 345, 167–183
54.Yang, Y.S.; Wang, L. A review of modeling tools for implementation of the EU water framework directive in handling diffuse water pollution. Water Resour.. 2010, 24, 1819–1843.
55.Yao, Jingtao. (2003). Sensitivity analysis for data mining. 272 - 277. 10.1109/NAFIPS.2003.1226795.
56.行政院環保署(2005),翡翠水庫水源保護區污染源調查計畫,行政院環境保護署。
57.吳政緯(2010),翡翠水庫營養鹽之總最大日負荷規劃,碩士論文,國立臺北科技大學
58.林鎮洋(2005),翡翠水庫集水區非點源污染削減措施整體規劃之研究,經濟部水利署臺北水源特定區管理局。
59.范其璇(2014),道路逕流重金屬污染模式分析,碩士論文,國立臺北科技大學
60.張尊國等(2005),翡翠水庫水源保護區土地利用之變遷分析,行政院環保署。
61.郭振泰等(1996),水質模式開發與總量管制策略之研究子題二:臺灣地區總量管制水質模式之建立與應用,行政院環境保護署。
62.陳弈秋(2015),石門水庫水質總量管制之研究,碩士論文,國立臺北科技大學
論文全文使用權限:同意授權於2023-08-09起公開