現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:三浦摺疊結構的幾何分析與力學 [以論文名稱查詢館藏系統]
論文英文名稱:Geometric Analysis and Mechanics of Miura-Fold Structures [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:林彥廷
英文姓名:Lin, Yen-Ting
研究生學號:105428062
學位類別:碩士
語文別:中文
口試日期:2018/07/25
論文頁數:66
指導教授中文名:尹世洵
口試委員中文名:宋裕祺;洪曉慧;尹世洵
中文關鍵詞:三浦摺紙摺紙幾何簡化桁架
英文關鍵詞:Miura-origamiGeometry of origamiSimplified truss model
論文中文摘要:近年來,摺紙文化啟發了很多科學研究與實際應用,而其中一種結構「三浦」(Miura)的摺紙設計更被學者們廣泛的研究,且具輕量化、高可變性、高即時變形能力等等的構件,已經廣泛應用於航太工程、家具裝飾與心血管支架等。然而這樣的結構卻未出現在土木結構上,國內的相關研究亦屈指可數。本文的目的在於評估三浦摺紙力學性能,並利用摺紙結構的優點應用在土木領域。
首先由三浦結構的幾何切入,藉由多次的投影技巧,將整個幾何關係公式化,尤其是單一細胞單元到多層結構的幾何尺寸、負波松比與密度;其次,提出一桁架桿件與抗彎彈簧模型分別模擬面內拉剪與面外撓曲,考慮在不同外力與邊界條件下,建立簡化的分析方法來替代複雜的有限元素分析。最後,比較簡化桁架與有限元素軟體,簡化桁架有更簡單更有效率的優點,並且可以被應用於更複雜的折紙結構模擬與最佳化幾何參數問題。
論文英文摘要:Recently, origami inspires many scientific studies and practical application. One of famous origami forms is Miura-origami, which has been widely studied by many researchers. It is deployable, self-adaptable, light-weight, and has been applied on aerospace engineering, biological engineering, furniture and so forth. However, little research has been explored for civil engineering in Taiwan. This thesis aims to investigate the mechanical properties of Miura-origami and utilize its advantages to the field of civil engineering.
First, geometry plays a key role in the mechanical properties of Miura-origami. The geometric relations of origami can be formulated by use of projection to three planes in space, especially for Poisson’s ratio and density from unit Miura cell to stacking of individual folded layers. Second, truss members and rotational springs are utilized to simulate the behaviors of in-plane stretching and shearing and out-of-plane bending of flat panel. When various force and boundary conditions are imposed, this simplified structural model is developed to replace more complicated finite element analysis.
Finally, the results indicate that such a simplified method is simpler and more efficient than the finite element one. This simplicity makes it well suited for simulating more complex origami structures and finding their optimized geometric parameters.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 v
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 研究內容與流程 3
第二章 Miura三浦摺紙的基本幾何 4
2.1單細胞幾何 5
2.2單層Miura-origami 10
2.3多層Miura-origami幾何 12
2.4小結 17
第三章 分析方法 18
3.1平面內拉力、壓力與剪力 22
3.1.1 公式推導 22
3.1.2 模型驗證 25
3.2面外撓曲 30
3.2.1 公式推導 31
3.2.2 模型驗證 36
第四章 案例分析 38
4.1單細胞結構 38
4.1.1 集中載重 39
4.1.2 均佈載重 46
4.2 多細胞結構 50
4.3 小結 60
第五章 結論與建議 61
5.1結論 61
5.2建議 62
5.3未來展望 62
參考文獻 64
論文參考文獻:1. Klett Y and Drechsler K, “Designing technical tessellations”, Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, 2011, pp.305-322.
2. Lebee A and Sab K, “Transverse shear stiffness of a chevron folded core used in sandwich construction”, Int J Solids Struct, vol. 47, no. 18-19, 2010, pp. 2620-2629.
3. Kaori Kuribayashi, Koichi Tsuchiya, Zhong You, Dacian Tomus, Minoru Umemoto, Takahiro Ito and Masahiro Sasaki, “Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil”, Mater Sci Eng A Struct Mater, vol. 419, no. 1-2, 2006, pp. 131-137.
4. Pickett G.T. “Self-folding origami membranes”, Europhys Lett, vol. 78, no. 4, 2007.
5. Tachi T and Miura K, “Cellular origami structure from foldable tubes”, Proceedings of the 7th International Structural Morphology Group Seminar, London, United Kingdom, Sep. 17-18, 2011.
6. Y. Nishiyama, ”Miura folding : Apply Origami to Space Exploration”, Int. J. Pure Appl. Math., vol. 79, no. 2, pp. 269-279, 2012.
7. Kenneth C Cheung, Tomohiro Tachi, Sam Calisch and Koryo Miura, ”Origami interleaved tube cellular materials”, Smart Mater. Struct. vol. 23, no. 9, 2014.
8. M. Eidini and G. H. Paulino,” Unraveling metamaterial properties in zigzag-base folded sheets”, Sci.Adv., vol. 1, no. 8, 2015.
9. Devin Balkcom and Matthew T. Mason, “Robotic origami folding”, Int. J. Robot. Res., vol. 27, no. 5, pp. 613-627, 2008.
10. S. Felton, M. Tolley, E. Demaine, D. Rus and R. Wood1, ”Applied origami. A method for building self-folding machines”, Science, vol. 345, 2014.
11. Escrig F, Valcarcel J.P. and Sanchez J., ”Deployable Cover on a Swimming Pool in Seville”, Journal of IASS, vol 37, no. 120, p39-70, 1996.
12. Noémi Friedman. “Investigation of highly flexible, deployable structures : review, modelling, control, experiments and application” , 2011.
13. Andrea Enrico Del Grosso and Paolo Basso, “Adaptive building skin structures”, Smart Materials and Structures, vol. 19, no. 12, 2010.
14. Florian Heinzelmann, “Lightweight Origami structure & daylighting modulation”, Proceedings of the International Association for Shell and Spatial Structures Symposium, Universidad Politecnica de Valencia, Spain, 2009.
15. A.P. Thrall and C.P. Quaglia, “Accordion shelters: A historical review of origami-like deployable shelters developed by the US military”, Engineering Structures, vol. 59, 2014, pp. 686-692.
16. Monica Norman , Kaveh Arjomandi, “origami applications in structural engineering: a look at temporary shelters”, Proceedings of the 2nd World Congress on Civil, Structural, and Environmental Engineering, Barcelona, Spain, 2017.
17. Miura Koryo, ”Zeta-Core Sandwich-Its Concept and Realization”, Institute of Space and Aeronautical Science, vol. 36, no. 6, 1972.
18. Miura Koryo, “Method of packaging and deployment of large membrane in space”, The Institute of Space and Astronautical Science report, vol. 618, 1985.
19. Mark Schenk & Simon D. Guest, “Geometry of miura-folded metamaterials”, PNAS, vol. 110, no. 9, 2013.
20. Z.Y. Wei, Z.V. Guo, L. Dudte, H.Y. Liang and L. Mahadevan, “Geometric Mechanics of Periodic Pleated Origami”, Phys Rev Lett, vol. 110, no. 21, 2013.
21. Cheng Lv, Deepakshyam Krishnaraju, Goran Konjevod, Hongyu Yu & Hanqing Jiang, “Origami Based Mechanical Metamaterials”, Scientific Reports, 2014.
22. Jesse L. Silverberg, Arthur A. Evans, Lauren McLeod, Ryan C. Hayward, Thomas Hull, Chris D. Santangelo, and Itai Cohen, “Using origami design principles to fold reprogrammable mechanical metamaterials”, Science, vol. 345, no. 6197, 2014, pp. 647-650.
23. Mark Schenk & Simon D. Guest, “Origami Folding : A Structural Engineering Approach”, Conference: 5OSME, Singapore, 2010.
24. Mark Schenk, S.D. Guest and Graham McShane, “Novel stacked folded cores for blast-resistant sandwich beams”, International Journal of Solids and Structures, vol. 51, no. 25–26, 2014, pp. 4196-4214.
25. Jiayao Ma, Degao Hou, Yan Chen and Zhong You , ”Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: Numerical simulation”, Thin-Walled Structures, vol. 100, 2016, pp. 38-47.
26. Evgueni T. Filipov, Tomohiro Tachi, and Glaucio H. Paulino,”Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials”, PNAS, vol.112, no. 40, 2015.
27. Maciej Piekarski, “Constructional solution for two-way-fold-depolyable space truss”, IUTAM-IASS Symposium on Deployable Structures: Theory and Applications, 2000, pp. 301-310.
28. Pooya Sareh and Simon D Guest, “Design of isomorphic symmetric descendants of the Miura-origami”, Smart Materials and Structures, vol. 24, 2015.
29. Valentina Beatini, “Translational Method for Designing Folded Plate Structures”, International Journal of Space Structures, vol. 30, no. 2, 2015.
30. Ke Liu & Glaucio H. Paulino, “MERLIN:A MATLAB implementation to capture highly nonlinear behavior of non-rigid origami”, IASS, Japan, 2016.
31. E.T.Filipov, K.Liu, T Tachi, M. Schenk, and G.H.Paulino, “Bar and hinge models for scalable analysis of origami”, International Journal of Solids and Structures, vol. 124, 2017, pp. 26-45.
32. Kazuko Fuchi, Philip R. Buskohl, James J. Joo, Gregory W. Reich, and Richard A. Vaia, “Numerical Analysis of Origami Structures Through Modified Frame Elements”, Origami 6, American Mathematical Society, 2016.
33. Evgueni T. Filipov, Tomohiro Tichi and Glauio H.Paulino, “Toward optimization of stiffness and flexibility of rigid, flat-foldable origami structures”, Origami 6, American Mathematical Society, 2015.
34. Lobkovsky AE, ”Boundary layer analysis of the ridge singularity in a thin plate”, Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, vol. 53, no. 4, 1996.
35. Ke Liu & Glaucio H. Paulino, “Nonlinear mechanics of non-rigid origami:an efficient computational approach”, Proceeding of the royal society a mathematical, physical and engineering sciences, vol. 473, 2017.
36. Alex Lobkovsky, Sharon Gentges, Hao Li, David Morse, T.A. Witten, ’Scaling Properties of Stretching Ridges in a Crumpled Elastic Sheet’, Science, vol. 270, 1995, pp. 1482-1485.
37. 鄭惟仁,最佳設計力學於摺疊結構之研究,碩士論文,國立淡江大學,臺北,2017。
38. 吳佳璋、黃俊銘,MSC.FEA有限元素結構分析:基礎與實例演練,臺北:全華圖書,2006。
39. 李邦國、路華鵬、胡仁喜,Patran 2006 and Nastran 2007有限元分析實例指導教程,北京:機械工業出版,2008。
40. 楊劍、張璞、陳火紅,新編MD Nastran有限元實例教程,北京:機械工業出版,2008。
41. Young W. Kwon & Hyochoong Bang, “The finite element method using matlab”, Florida: CRC Pr I Llc, 2000.
論文全文使用權限:同意授權於2018-08-08起公開