現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:LID導入新舊城區對於逕流分擔影響之研究 [以論文名稱查詢館藏系統]
論文英文名稱:The Influence on Runoff Distribution Imposed by the LID Installed on New and Old Urban Catchments [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:郭昭廷
英文姓名:CHAO-TING KUO
研究生學號:105428075
學位類別:碩士
語文別:中文
口試日期:2018/07/30
論文頁數:129
指導教授中文名:林鎮洋
指導教授英文名:JEN-YANG LIN
口試委員中文名:游景雲;陳起鳳
口試委員英文名:JIING-YUN YOU;Chi-Feng Chen
中文關鍵詞:低衝擊開發海綿城市都市地表逕流SWMM模式
英文關鍵詞:Low Impact DevelopmentUrban RunoffSponge citySWMM
論文中文摘要:傳統的城市雨水管理方法主要是使用道路排水溝與其他灰色基礎設施(grey  infrastructure,GI),盡可能快速安全地透過系統來傳送雨水逕流,但由於全球氣候的變遷造成極端降雨發生,再加上都市化(urbanization)的快速發展,造成自然生態系統和環境的負面影響變得更加普遍且嚴重。建構海綿城市所使用的技術,即為一般常見的低衝擊開發,是以生態系統為基礎,從逕流源頭開始的暴雨管理方法,透過滲透、過濾、貯存、蒸發與延遲逕流,達到減少暴雨逕流的目標。本研究將低衝擊開發技術導入兩個區域,分別為北投士林科技園區與鄰近的文昌排水分區,如何有效結合都市空間規劃結合綠色基礎設施與傳統的水利工程解決淹水問題,已成為市政單位灼手的議題之一。本研究將重點研究如何在新舊城區進行地表逕流的削減,並應用美國環境保護署(U.S.EPA)推出的暴雨管理模式(Storm Water Management Model, SWMM),作為模擬分析工具,使用不同降雨型態作為輸入條件,模擬研究區域於開發前後之地表總逕流量與洪峰流量之變化,在符合法規、本土參數設置下,導入相關LID設施,觀察逕流削減成效。
論文英文摘要:The traditional urban rainwater management system relies on road gullies and grey infrastructure (GI) to drain off rainfall runoff. Faced with the extreme precipitation resulted from global weather changes accompanied by the trend of urbanization, however, the natural ecosystem and the urban environment are deteriorating faster than ever.
Many technologies have been developed to construct sponge cities. These technologies are founded on ecosystem, and are also known as low impact development technologies, aiming to manage storm water and to deal with the source of runoff in an attempt to solve the problems permanently. For this reason, various methods such as penetration, filter, storage, evaporation and delayed runoff are employed in order to minimize the impact resulted from rainstorm runoff.
This study intended to integrate low impact development technologies into two urban Catchments, namely, Beitou-Shilin Technology Park and the adjoining Wenchang Drainage Area, in an attempt to solve the runoff issues. Presently, how to combine urban space planning, green infrastructure and the traditional hydraulic engineering together in order to solve the waterflooding issues has become a demanding task for the city government. For this reason, this study focused on how to reduce surface runoff in new and old urban areas, using the Storm Water Management Model (SWMM) developed by U. S. EPA to simulate and analyze the reduction of surface runoff. In this study, various rainfall patterns were employed as input conditions to simulate and examine the changes of total surface runoff, base runoff hydrograph and peak discharge before and after the development. By doing so, this study has observed the effectiveness of runoff reduction after LID is installed with native parameter as required by all applicable laws and ordinances.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 xi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究流程 5
第二章 文獻回顧 7
2.1 低衝擊開發 7
2.1.1 低衝擊開發緣起與定義 8
2.1.2 低衝擊開發設施 11
2.2海綿城市 19
2.2.2 海綿城市案例介紹 19
2.3 水文評估模式 28
2.3.1 水文評估模式介紹與評選 28
2.3.2 SWMM水文評估模式應用實例 35
第三章 研究方法 37
3.1 研究區域選定 37
3.2 研究區域概述 40
3.2.1 研究區域與範圍位置 40
3.2.2 氣候條件 43
3.2.3 水文條件與排洪系統 45
3.2.4 地文系統 48
3.2.5 土地利用配置 49
3.2.6 歷史災害 52
3.3 模式介紹 54
3.3.1 地理資訊系統(GIS) 54
3.3.2 美國環保署-暴雨逕流管理模式(EPA SWMM) 56
3.4 模式建置與流程 62
3.4.1 資料收集、GIS與SWMM建立子集水區 62
3.4.2 SWMM基本參數輸入 70
3.4.3 LID設施參數設計 74
3.4.4 LID設置原則 81
3.5 逕流模擬 88
3.5.1 合理化公式 88
3.5.2 情境假設 92
3.6 新舊城區差異 94
第四章 結果與討論 96
4.1 合理化公式計算結果 96
4.2 地表逕流模擬結果 97
4.2.1 總逕流量與洪峰流量模擬結果(設計暴雨) 97
4.2.2 總逕流量與洪峰流量模擬結果(豐枯水年) 109
第五章 結論與建議 114
5.1 結論 114
5.2 建議 117
參考文獻 118
論文參考文獻:英文文獻
1. Ahiablame, L.M., B.A. Engel and I. Chaubey (2012), “Effectiveness of low impact
development practices: Literature review and suggestions for future research” Water,
Air, and Soil Pollution, 223(7), pp. 4253-4273.
2. Argent, N., F. Rolley and J. Walmsley (2008), “The Sponge City Hypothesis: does it hold water?” Australian Geographer, 39(2), pp. 109-130.
3. Andoh, R.Y.G. and C. Declerck (1997), “A cost effective approach to stormwater
management–source control and distributed storage”, Water Sci. Technol., 36, pp.307-
311.
4. Bababi, S., R. Ghazavi and M. Erfanian (2018), “Urban flood simulation and prioritization of critical urban sub-catchments using SWMM model and PROMETHEE II approach”, Physics and Chemistry of the Earth, Parts A/B/C, 105, pp.3-11.
5. Bisht, D. S., C. Chatterjee, S. Kalakoti, P. Upadhyay, M. Sahoo and A. Panda (2016), “Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study”, Natural Hazards, 84(2), pp. 749-776.
6. Baek, S.S., D.H. Choi, J.W. Jung, H.J. Lee, H. Lee, K.S. Yoon and K.H. Cho (2015), “Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach”, Water Research, 86(1), pp. 122–131.
7. Barbosa, A.E., J.N.Fernandes and L.M.David (2012), “Key issues for sustainable urban stormwater management” Water Research, 46 (20), pp. 6787-6798.
8. Burns, M.J., T.D. Fletcher, C.J. Walsh, A.R. Ladson and B.E. Hatt (2012), “Hydrologic
shortcomings of conventional urban stormwater management and opportunities for
reform” Landscape and Urban Planning, 105(3), pp.230–240.
9. Burian, S.J., and Pomeroy, C.A. (2010), “Urban Impacts on the Water Cycle and Potential Green Infrastructure Implications”, Urban Ecosystem Ecology, 55, pp. 277-296.
10. Bedan, E.S. and J.C Clausen (2009), “Stormwater Runoff Quality and Quantity From Traditional and Low Impact Development Watersheds 1”, Journal of the American Water Resources Association, Volume 45(4).
11. Bosley, E.K. (2008), “Hydrologic Evaluation of Low Impact Development Using a Continuous”, Spatially-Distributed Model, Blacksburg: Virginia Polytechnic Institute and State University.
12. Budge, T.M. (2006), “Sponge Cities and Small Towns: a New Economic Partnership”, the changing nature of Australias country towns, pp. 38-52.
13. Banting, D., H. Doshi, J. Li, and P. Missios (2005), Report on the Benefits and Costs of Green Roof Technology for the City of Toronto, Ryerson University.
14. Benjamin, O.B. and B.B. Derek (2003), “Long-term stormwater quantity and quality
performance of permeable pavement systems”, Water Research, 37(18), pp. 4369–
4376.
15. Chen, C. F., J. Y. LIN, C. C. HO and C. T. Kuo (2018), “Performance evaluation of combined LID facilities on runoff reduction- a case of Taipei Tech. campus in Taiwan”, International Low Impact Development Conference.
16. Chen Y., H.W. Samuelson and Z. Tong (2016), “Integrated design workflow and a new tool for urban rainwater management”, Journal of Environmental Management, Volume 180(15), pp. 45-51.
17. Cristana, R., W. M. Aust, M. C. Bolding, S. M. Barrett, J. F. Munsell and E. Schilling (2016), “Effectiveness of forestry best management practices in the United States: Literature review”, Forest Ecology and Management, Volume 360, pp. 133-151.
18. Chadwick, M.A., J.E. Thiele, A.D. Huryn and A.C. Benke (2012), “Effects of urbanization on macroinvertebrates in tributaries of the St. Johns River, Florida, USA” Urban Ecosystems, 15(2), pp. 347-365.
19. Chang, C.R., M.H. Li and S.D. Chang (2007), “A preliminary study on the local
cool-island intensity of Taipei city parks”, Landscape and Urban Planning, 80(4),
pp.386–395.
20. Doubleday, G., A.Sebastian, T.Luttenschlager and B.Philip B (2013), “Modeling hydrologic benefits of low impact development: A distributed hydrologic model of the Woodlands, Texas”, J. Am. Water Resour. Assoc. vol.49, no. 6, pp.1444–1455.
21. Davis, A.P. (2005), “Green Engineering Principles Promote Low-impact Development”, Environmental Science & Technology, 39(16), pp.338-344.
22. Dore, M.H. (2005), “Climate change and changes in global precipitation patterns: what do we know?”, Environment International, Volume 31(8), pp. 1167-1181.
23. Emerson, C.H. and R.G.Traver (2008), “Multiyear and seasonal variation of infiltration from storm-water best management practices”, Journal of Irrigation and Drainage Engineering, 134 (5), pp. 598-605.
24. English Nature, (2003), Green Roofs: Their Existing Status and Potential for Conserving Biodiversity in Urban Areas, English Nature Report No. 498, Peterborough.
25. Franz, K.F. (2013), “Treatment of parking lot runoff by a tree box filter”, Desalination and Water Treatment, 51(19), pp. 4044-4049.
26. Fletcher, T., L. Peljo, J. Fielding, T. Wong and T. Weber (2002), “The Performance of Vegetated Swales for Urban Storm water Pollution Control”, Global Solutions for Urban Drainage, pp.1-16.
27. Federal Interagency Stream Restoration Working Group (FISRWG) (1998), Stream Corridor Restoration: Principles, processes, and Practices, PB98-158348LUW.
28. Hager, G.W., K.T. Belt,W. Stack, K. Burgess, J.M. Grove, B. Caplan, M. Hardcastle, D.
Shelley, S.T. Pickett and P.M. Groffman (2013), “Socioecological revitalization of an
urban watershed”, Frontiers in Ecology and the Environment, Volume 11(1).
29. Harbor, J. (1994),“A practical method for estimating the impact of land-use change on surface runoff, groundwater recharge, and wetland hydrology”, Journal of the American Planning Association, Volume 60(1), pp.95-108.
30. Jiang, L., Y. Chen, and H. Wang (2015),“Urban flood simulation based on the SWMM model”, The Proceedings of the International Association of Hydrological, 368, pp. 186-191.
31. Jia, H.F., H.R. Yao, S.L. Yu (2013), “Advances in LID BMPs research and practice for urban runoff control in China”, Frontiers of Environmental Science & Engineering, Volume 7(5), pp. 709-720.
32. Kirby, J., Durrans, S., Pitt, R., and P. Johnson (2005), “Hydraulic Resistance in Grass Swales Designed for Small Flow Conveyance”, Journal of Hydraulic Engineering (ASCE), 131(1), pp. 65-68.
33. Lin, J.Y., C.F. Chen and C.C. Ho (2018), “Evaluating the Effectiveness of Green Roads for Runoff Contro”, Sustainable Water in the Built Environment, 4(2).
34. Lim, H.S. and X.X. Lu (2016), “Sustainable urban stormwater management in the tropics: An evaluation of Singapore’s ABC Waters Program ”, Journal of Hydrology, 538, pp.842-846.
35. Luo, P., B. He, K. Takara, Y.E. Xiong, D. Nover, W. Duan and K. Fukushi (2015), “Historical assessment of Chinese and Japanese flood management policies and implications for managing future floods”, Environmental Science & Policy, 48, pp. 265–277.
36. Lucas, W., N. She, and J. Liu (2012), “Advanced LID Experimental Array: Shenzhen University, Guangdong Province, China”, World Environmental and Water Resources Congress 2012, pp. 203-212.
37. Lucas, W.C. (2010), “Design of integrated bio-infiltration-detention urban retrofits with design storm and continuous simulation methods”, Journal of Hydrologic Engineering, 15 (6), pp. 486-498.
38. LOW IMPACT DEVELOPMENT STORMWATER MANAGEMENT PLANNING AND DESIGN GUIDE (2010), CREDIT VALLEY CONSERVATION.
39. Martins, T.A.L., L. Adolphe, M. Bonhomme, F. Bonneaud, S. Faraut, S. Ginestet, C. Michel and W. Guyard (2016), “Impact of Urban Cool Island measures on outdoor climate and pedestrian comfort: Simulations for a new district of Toulouse, France”, Sustainable Cities and Society, 26, pp.9–26.
40. Marlène van der Sterren, A. Rahman and G. Ryan (2014), “Modeling of a lot scale rainwater tank system in XP-SWMM: A case study in Western Sydney, Australia”, Journal of Environmental Management, 141, pp. 177-189.
41. Misra, A.K. (2011), “Impact of urbanization on the hydrology of Ganga Basin (India)”, Water Resources Management, 25 (2), pp. 705-719.
42. Matthew, P.J. amd F. H. William (2010), “Performance of rainwater harvesting systems in the southeastern United States”, Resources, Conservation and Recycling, 54(10), pp. 623-629.
43. Montalto, F., C. Behr, K. Alfredo, M. Wolf, M. Arye and M. Walsh (2007), “Rapid assessment of the cost-effectiveness of low impact development for CSO control”, Landscape Urban Plan, 82, pp.117–131.
44. Mitchell V.G. (2006), “Applying integrated urban water management concepts: A review of Australian experience”, Environmental Management, Volume 37(5), pp. 589-605.
45. Moscrip, A.L. and D.R. Montgomery (1997), “Urbanization flood, frequency and salmon abundance in Puget Lowlan streams”, JAWRA Journal of the American Water Resources Association, Volume 33(6), pp.1289-1297.
46. Nagy, R.C., B.G.Lockaby, L.Kalin and C.Anderson (2012), “Effects of urbanization on stream hydrology and water quality: the Florida Gulf Coast”, Hydrological Processes, 26 (13), pp. 2019-2030.
47. Nie, C., H. Li, L. Yang, S. Wu, Y. Liu and Y. Liao (2012), “Spatial and temporal
changes in flooding and the affecting factors in China”, Natural Hazards, 61(2), pp.
425-439.
48. Nakamura, J., and N. Villagra (2009), “Hydrologic Modeling of the Little Crum Creek Watershed with SWMM”, E90 Senior Design Project.
49. Paule-Mercado, M.A., B.Y. Lee, S.A. Memon, S.R. Umer, I. Salim and C.-H. Lee. (2017),“Influence of land development on stormwater runoff from a mixed land use and land cover catchment”, Science of The Total Environment, Volume 599-600(1), pp.2142-2155.
50. Palla, A., J.J. Sansalone, I. Gnecco and L.G. Lanza (2011), “Storm water infiltration in
a monitored green roof for hydrologic restoration”, Water Science and Technology,
64(3), pp.766-773.
51. Palhegy, G.E (2009), “Designing storm-water controls to promote sustainable
ecosystems: science and application”, J. Hydrol. Eng., 15, pp.504–511.
52. Phillips, M. J. and C. R. Blinn (2004), “Best management practices compliance monitoring approaches for forestry in the eastern United States”, Water, Air and Soil Pollution: Focus, Volume 4, Issue 1, pp 263–274.
53. Rowe, D.B. (2004), “Green roof stormwater retention”, Journal of Environmental Quality, 34(3), pp. 1036-1044.
54. Santamouris, M. (2013), “Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments”, Renewable and Sustainable Energy Reviews, 26, pp.224–240.
55. Stovin, V., G. Vesuviano and H. Kasmin (2012), “The hydrological performance of a
green roof test bed under UK climatic conditions”, Journal of Hydrology, Volumes
414–415, pp.148-161.
56. San Diego Low Impact Development Design Manual (2011), CITY OF SAN DIEGO STORM WATER.
57. Scholz, M. and P. Grabowiecki (2007), “Review of permeable pavement systems”, Building and Environment, 42(11), pp.3830-3836.
58. Tang, Z., B.A. Engel, B.C. Pijanowski and K.J. Lim (2005), “Forecasting land use change and its environmental impact at a watershed scale”, Journal of Environmental Management, Volume 76(1), pp.35-45.
59. Takashi Asaeda and Vu Thanh Ca (2000), “Characteristics of permeable pavement during hot summer weather and impact on the thermal environment”, Building and Environment, 35(4), pp.363–375.
60. U.S. EPA, Storm Water Management Model User’s Manual Version 5.1.
61. U.S. Army Corps of Engineers, “Unified Facilities Criteria (UFC)-Low Impact Development”, 2010.
62. U.S. EPA, Office of Water, Washington, DC, National Water Quality Inventory Report to Congress, EPA-841-R-00-001, 2000a.
62. U.S. EPA, Liquid Assets 2000: Americas Water Resources at a Turning Point, EPA-840-B-00-001, EPA-840-B-00-001, 2000b.
63. Versini, P.-A, D. Ramier, E. Berthier and B. de Gouvello (2015), “Assessment of the hydrological impacts of green roof: From building scale to basin scale”, Journal of Hydrology, 524, pp. 562-575.
64. Visitacion, B.J., D.B. Booth and A.C. Steinemann (2009), “Costs and benefits of storm-water management: case study of the Puget sound region”, Journal of Urban Planning and Development, Volume 135(4), pp.150-158.
65. Williams, E.S. and W.R.Wise (2006), “Hydrologic impacts of alternative approaches to storm water management and land development”, Journal of the American Water Resources Association, 42 (2), pp. 443-455.
66. Zhang, B., P. Huang, D. Du, H. Du and W. He (2018), “The Present Status of Wastewater Control and Sponge City Construction in Zhenjiang City”, Advances in Environmental Protection, Volume 8(1), pp. 8.

中文文獻
1. 內政部建研所(2015),社區及建築基地減洪防洪規劃手冊輔助計算工具建置研究。
2. 內政部建研所(2015),屋頂綠化技術手冊。
3. 內政部營建署(2015),水環境低衝擊開發設施操作手冊編制與案例評估計畫總結報告,國立臺灣大學執行。
4. 內政部營建署(2015),市區道路透水性鋪面使用手冊,社團法人中華鋪面工程學會執行。
5. 內政部營建署(2010),自行車路線規劃及設計原則參考手冊,營建署委託,國立臺北科技大學
6. 內政部營建署(2009),都市暴雨模擬分析系統操作手冊,營建署委託,國立臺灣大學執行。
7. 內政部營建署(2008),市區道路人行道與腳踏車空間改善策略暨鋪裝材料技術研究。
8. 毛振泰、張承宗(2000),「河川流域整體治理策略之探討」,第十一屆水利工程研討會論文集,臺北,91-93頁。
9. 行政院環保署(2013),降雨逕流非點源污染最佳管理技術(BMPs)手冊。
10. 朱曉娟、趙江、朱畜坤(2014),「《鎮江市城市排水規劃》的探索和創新」,中國給水排水,第三十卷,第二十二期,42-45頁。
11. 李明晃(2004),都市公園與局地氣溫效應之關係研究-以臺北市公園為例,中國文化大學景觀學研究所碩士論文。
12. 何嘉浚、張峰毓(2016),「以植生滯留槽控制農業非點源污染」,土木水利,第四十三期,第五期,12-18頁。
13. 呂書豪(2015),提升樹箱過濾設施水質淨化效能之研究,國立臺北科技大學土木與防災所碩士論文。
14. 林鎮洋(2016a),「低衝擊開發」,土木水利,43(5),第4頁。
15. 林鎮洋,郭昭廷(2016b),以永續生態工法與低衝擊開發策略打造宜居海綿城市,臺北市地政局電子書文章。
16. 林鎮洋、王佳偉、陳羿秋、陳正惠、陳起鳳(2015),「綠色公路逕流抑制設施功能評估」,中國土木水利工程學刊,第二十七卷,第二期,第105-111頁。
17. 林鎮洋、陳起鳳、王佳偉、陳志方、莫懿美、杜凱立、黃子珉(2012),「臺北市總合治水成效評量及控管系統開發建置,土地開發之水環境營造」,中華技術,第九十六期,68-85頁。
18. 林志棟,陳世晃,簡婉芸,王信越(2008),透水性鋪面於熱島效應上之成效,第七屆鋪面材料再生學術研討會論文集,12-21頁。
19. 林同棪工程顧問公司(2004),北投士林科學園區環境影響評估及整地初步規劃-地質鑽探及試驗成果報告書。
20. 林憲德(2002),「綠建築評估體系之雨水貯留滲透對策」,水資源管理季刊,第四卷,第二期,20-25頁。
21. 胡堅、李迪華(2015),「與地方政府的對話:鎮江市的海綿城市建設經驗」,景觀設計學,第二期,32-39頁。
22. 凃耀珽、林維鴻、蔡建緯、謝佳翰、高志明(2016),「大樹舊鐵橋人工濕地水質淨化與生態效益探討」,土木水利,第四十三卷,第五期,55-58頁。
23. 俞孔堅、李迪華、袁弘、傅微、喬青、王思思(2015),「海綿城市理論與實踐」,城市規劃,第三十九卷,第六期,26-36頁。
24. 俞孔堅、李迪華、劉海龍、程進(2005),「基於生態基礎設施的城市空間發展格局-反規劃之台州案例」,城市規劃期刊,第九期,76-80頁。
25. 柳中明、陳瑞文、陳起鳳、劉銘龍、陳明烈、陳瑞成、蕭香娟、陳世勳、陳庭豪(2012),因應氣候變遷,創造海綿城市,低碳生活部落格。
26. 高山青,廖貴賢(2017),「中國海綿城市計畫初探:政策背景與推動現況」,綠建築,第50期。
27. 徐振強(2015),「中國特色海綿城市試點示範績效評價概念模型的建立與應用-兼論我國海綿城市創新體系平台的建設」,中國名城期刊,第五期,16-25頁。
28. 徐年盛(2014),「低衝擊開發綠色減洪新技術」,營建知訊期刊,第三百七十三期,33-45頁。
29. 張峰毓(2016),植生滯留槽應用於茶園非點源污染削減之研究,國立臺北科技大學土木與防災所碩士論文。
30. 張嘉玲(2008),「低衝擊開發之應用及發展趨勢」,土木水利期刊,第三十五卷,第四期,104-110頁。
31. 張哲豪、連和政(2004),臺灣沿海地區淹水潛勢之研究計畫(2/2),經濟水利署委託,國立臺北科技大學執行,2004年。
32. 許少華(2014),「以SWMM模式評估花槽減緩地表逕流之效益」,臺灣水利期刊,第六十三卷,第三期,44-56頁。
33. 陳起鳳(2016),「都市低衝擊開發之綠屋頂應用」,中華技術期刊,第四十六卷,第一百零九期,46-57頁。
34. 陳茂松(2015)低衝擊開發之設計策略 一個整體性的設方案-譯者序
35. 陳正惠(2014),綠色公路逕流抑制設施功能評估,國立臺北科技大學土木與防災所碩士論文。
36. 陳宜隆(2012),應用SUSTAIN模擬生態校園地表逕流之削減能力-以臺北科技大學為例,國立臺北科技大學土木與防災所碩士論文。
37. 陳伸賢(2010),「氣候變遷對水利工程挑戰與調適」,水利會訊,第十三期,22-33頁。
38. 章林偉(2015),「海綿城市建設概論」,工業技術給水排水期刊,第六期,1-7頁。
39. 彭振聲、林士斌、余世凱(2016),「永續臺北海綿城市」,土木水利,第四十三卷,第五期,38-54頁。
40. 趙江、王皓正、葉向強(2016),「海綿城市建設背景下老舊小區內澇防治探索-以江蘇省鎮江市江二小區為例」,建設科技,第十五期,32-35頁。
41. 劉海龍、張丹明、李金晨、頡赫男(2014),「景觀水文與歷史場所的融合-清華大學勝因院景觀環境改造設計」,中國園林,第一期。
42. 臺北市政府工務局(2018),臺北市海綿移居城市實現策略規劃與課題探討,臺北市政府工務局委託,財團法人國土規劃及不動產資訊中心、中華經濟研究院。
43. 臺灣下水道協會(2017),雨水貯留滲透設施(塑膠製品)技術手冊。
44. 臺北市政府新工處(2017),人行道透水鋪面透水率衰減監測,環興科技股份有限公司執行。
45. 臺灣世曦工程顧問公司(2015),以低衝擊開發技術建構海綿城市之研究,國立臺北科技大學水環境研究中心執行。
46. 臺灣世曦工程顧問公司(2014),以近自然工法建置低衝擊開發社區之本土化設計參數及水環境效益評估技術,國立臺北科技大學水環境研究中心執行。
47. 臺北市政府工務局水利工程處(2014),臺北市總合治水成效評量及控管系統開發建置,臺北市政府工務局水利工程處委託,臺灣世曦工程顧問公司。
48. 臺南市政府水利局(2014),臺南市建築基地雨水貯集滯洪設施。
49. 蔡佳璋(2007),綜合治水對策中SOBEK 淹水模式之應用-以雲林南部沿海地區為例,國立中興大學土木工程研究所碩士論文。
50. 歐陽嶠暉(2001),都市環境學,詹氏書局。
51. 童慶斌、游保杉、李明旭、張良正、洪念民(2009),強化區域水資源永續利用與因應氣候變遷之調適能力,經濟部水利署水利規劃試驗所。
52. 黃耀賢(2015),都市低衝擊開發設施最佳化配置研究─以臺北市民生社區為例,國立臺灣大學土木工程研究所碩士論文。
53. 黃世欽(2009),「淺談水庫生態工程-以翡翠水庫水質改善生態工程為例」,水利土木科技資訊季刊,第二卷,第四十四期,21-28頁。
54. 黃良雄、賴進松、謝平城(1999),花蓮市排水及美崙溪河口淤砂之研究及改善計畫(二),國立臺灣大學水工試驗所研究報告第354號。
55. 溫清光、余嘯雷(1995),非點源污染調查及最佳管理之功能作業(一),行政院環境保護署委託,國立成功大學環境工程研究所執行。
56. 經濟部水利署(2014),逮魚堀溪茶園非點源污染削減現地處理調查規劃,經濟部水利署臺北水源特定區管理局委託,國立臺北科技大學水環境研究中心執行。
57. 經濟部水利署(2011),因應氣候變遷區域淹水模擬與災害管理規劃技術研究(2/3),水利署委託,國立臺灣大學執行。
58. 廖信凱(2016),「低衝擊開發對於逕流抑制評估-以桃園航空城雙溪基地為例」,國立臺北科技大學土木與防災所碩士論文。
論文全文使用權限:同意授權於2018-08-08起公開