現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:利用反應式濺鍍法製備氧化銥奈米樹枝狀生物電極薄膜 [以論文名稱查詢館藏系統]
論文英文名稱:Fabrication of iridium oxide nanotree thin film by reactive sputtering for implantable stimulating electrode applications [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:鄭宇倫
英文姓名:Yu-Lun Cheng
研究生學號:105788043
學位類別:碩士
語文別:中文
口試日期:2018/07/20
論文頁數:55
指導教授中文名:陳柏均
口試委員中文名:林律吟;陳政營
中文關鍵詞:神經刺激二氧化銥射頻磁控濺鍍反應式濺鍍
英文關鍵詞:NeurostimulationIridium OxideRF magnetron sputterReactive Sputtering
論文中文摘要:氧化銥由於其具備理想的穩定性,電化學性能和生物相容性而成為用於生物界面應用的理想材料。奈米結構的氧化銥具有幾個有利的性質,包括大表面積,質量輕,表面具親水性,理想的電化學能力和細胞貼附性。本實驗中,我們利用反應式濺鍍來製造均勻的具奈米結構氧化銥薄膜。氧化銥奈米薄膜經過電荷存儲容量(CSC)和電化學阻抗分析以評估其作為用於可植入裝置的刺激電極的能力。來自掃描顯微鏡的圖像證實形成均勻的氧化銥樹枝狀薄膜。另外,通過執行1000次循環伏安法來評估氧化銥奈米薄膜的循環壽命。銥氧化物奈米薄膜分析出具較大的CSC值和低的電化學阻抗,這歸因於其具有高表面積的樹枝狀奈米結構。因此,銥氧化物奈米薄膜的這些優異特性使其成為植入式刺激電極和其他生物界面應用的理想材料。
論文英文摘要:Iridium oxide is an attractive material for bio-interface applications due to its desirable stability, electrochemical performance, and biocompatibility. Nanostructured iridium oxide possesses several advantageous properties including large surface to volume ratio, light weight, super hydrophilic surface, desirable electrochemical capability, and cell adhesion. Herein, we employ a reactive sputtering process to fabricate uniform nanostructured iridium oxide thin film. The iridium oxide nanotree thin film undergoes electrochemical analysis in charge storage capacity (CSC) and electrochemical impedance to evaluate its potential as stimulating electrodes for implantable devices. Image from scanning microscopes confirm the formation of uniform iridium oxide nanotree. In addition, the cycling lifetime of iridium oxide nanotree thin film is evaluated by performing CV scans for 1,000 cycles. The iridium oxide nanotree thin film reveals large CSC values and low electrochemical impedances which are attributed to its dendritic nanostructure with high surface area. To sum up, these excellent characteristics presented for the iridium oxide nanotree thin film make it a promising candidate for the implantable stimulating electrodes and other bio-interface applications. In addition, the finding in this work is expected to make impact on bioelectronics medicine applications given the significant electrochemical performance.
論文目次:摘要 II
ABSTRACT III
誌謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章、緒論 1
1.1 前言 1
1.2 研究動機 1
第二章、文獻回顧 3
2.1 濺鍍原理 3
2.1.1 電漿產生原理 3
2.1.2 電漿產生源 4
2.1.3 直流濺鍍系統 (DC sputtering) 4
2.1.4 射頻濺鍍系統 (RF sputtering) 5
2.1.5 反應式濺鍍 (Reactive sputtering) 6
2.2 薄膜沉積機制 6
2.2.1 薄膜成長機制 7
2.2.2 薄膜微觀結構 8
2.3 刺激電極 11
2.3.1 非法拉第電極/材料 12
2.3.2 法拉第電極/材料 13
2.4 二氧化銥介紹 14
2.4.1 二氧化銥物理化學性質 15
2.4.2 製程比較 16
第三章、實驗步驟與方法 17
3.1 實驗流程 17
3.2 實驗設備 18
3.3 薄膜分析 20
3.3.1 掃描式電子顯微鏡 (SEM, scanning electron microscope) 20
3.3.2 X-ray繞射儀 (XRD, X-ray diffraction) 20
3.3.3 循環伏安法 (CV, Cyclic voltammetry) 21
3.3.4 交流阻抗 (EIS, electrochemical impedance spectroscopy) 22
3.3.5 X-ray電子能譜儀 (XPS, X-ray photoelectron spectroscopy) 22
第四章、實驗結果與討論 23
4.1 平面結構 23
4.1.1 實驗流程 23
4.1.2 結果與討論 23
4.2 樹枝狀結構 32
4.2.1 實驗流程 32
4.2.2 結果與討論 33
4.3 平面結構與樹枝狀結構比較及應用 46
4.3.1 細胞測試比較 46
4.3.2 平面及樹枝狀結構之應用 49
第五章、結論 50
參考文獻 52
論文參考文獻:1. Wessling, B., W. Mokwa, and U. Schnakenberg, RF-sputtering of iridium oxide to be used as stimulation material in functional medical implants. Journal of Micromechanics and Microengineering, 2006. 16(6): p. S142.
2. Huang, C.Q., et al., Electrical stimulation of the auditory nerve: direct current measurement in vivo. IEEE Transactions on biomedical engineering, 1999. 46(4): p. 461-469.
3. Humayun, M.S., et al., Pattern electrical stimulation of the human retina. Vision research, 1999. 39(15): p. 2569-2576.
4. Grumet, A.E., J.L. Wyatt Jr, and J.F. Rizzo III, Multi-electrode stimulation and recording in the isolated retina. Journal of neuroscience methods, 2000. 101(1): p. 31-42.
5. Hesse, L., et al., Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat. Graefes archive for clinical and experimental ophthalmology, 2000. 238(10): p. 840-845.
6. Wessling, B., W. Mokwa, and U. Schnakenberg, RF-sputtering of iridium oxide to be used as stimulation material in functional medical implants. Journal of Micromechanics and Microengineering, 2006. 16(6): p. S142-S148.
7. Beebe, X. and T. Rose, Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline (neurological stimulation application). IEEE transactions on biomedical engineering, 1988. 35(6): p. 494-495.
8. Cogan, S.F., et al., In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes. IEEE Transactions on Biomedical Engineering, 2005. 52(9): p. 1612-1614.
9. Robblee, L., J. Lefko, and S.B. Brummer, Activated Ir: An electrode suitable for reversible charge injection in saline solution. Journal of the Electrochemical Society, 1983. 130(3): p. 731-733.
10. Lee, I.-S., et al., Formation of nano iridium oxide: material properties and neural cell culture. Thin Solid Films, 2005. 475(1-2): p. 332-336.
11. Meyer, R.D., et al., Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2001. 9(1): p. 2-11.
12. Mailley, S., et al., Electrochemical and structural characterizations of electrodeposited iridium oxide thin-film electrodes applied to neurostimulating electrical signal. Materials Science and Engineering: C, 2002. 21(1-2): p. 167-175.
13. Slavcheva, E., et al., Sputtered iridium oxide films as charge injection material for functional electrostimulation. Journal of the Electrochemical Society, 2004. 151(7): p. E226-E237.
14. Liao, P., et al., Characterization of IrO2 thin films by Raman spectroscopy. Thin Solid Films, 1997. 301(1-2): p. 7-11.
15. Rickerby, D.S. and A. Matthews, Advanced surface coatings: a handbook of surface engineering. 1991: Blackie. Chapman and Hall.
16. 丁南宏, 真空技術與應用. 2004, 行政院國科會精密儀器發展中心.
17. Chapman, B.N., Glow discharge processes: sputtering and plasma etching. 1980: Wiley.
18. Wasa, K. and S. Hayakawa, Handbook of sputter deposition technology. 1992.
19. Petrov, I., et al., Microstructural evolution during film growth. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2003. 21(5): p. S117-S128.
20. Ohring, M., Materials science of thin films. 2001: Elsevier.
21. 王力衡, 黄运添, and 郑海涛, 薄膜技术. 1991, Beijing: Press of TsingHua University.
22. Kaiser, N., Review of the fundamentals of thin-film growth. Applied optics, 2002. 41(16): p. 3053-3060.
23. Venables, J., G. Spiller, and M. Hanbucken, Nucleation and growth of thin films. Reports on Progress in Physics, 1984. 47(4): p. 399.
24. Movchan, B. and A. Demchishin, STRUCTURE AND PROPERTIES OF THICK CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDES, AND ZIRCONIUM DIOXIDE IN VACUUM. Fiz. Metal. Metalloved. 28: 653-60 (Oct 1969). 1969.
25. Thornton, J.A., Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings. Journal of Vacuum Science and Technology, 1975. 12(4): p. 830-835.
26. Savaloni, H. and M.G. Shahraki, A computer model for the growth of thin films in a structure zone model. Nanotechnology, 2003. 15(3): p. 311.
27. Müller, K.H., Dependence of thin‐film microstructure on deposition rate by means of a computer simulation. Journal of applied physics, 1985. 58(7): p. 2573-2576.
28. Pelliccione, M., T. Karabacak, and T.-M. Lu, Breakdown of dynamic scaling in surface growth under shadowing. Physical review letters, 2006. 96(14): p. 146105.
29. Liu, D., D. Liu and M. Plischke, Phys. Rev. B 38, 4781 (1988). Phys. Rev. B, 1988. 38: p. 4781.
30. Karabacak, T., et al., Growth-front roughening in amorphous silicon films by sputtering. Physical Review B, 2001. 64(8): p. 085323.
31. Sánchez, P.A., et al., Influence of microstructure on the transitions between mesoscopic thin-film morphologies in ballistic-diffusive models. Physical Review E, 2010. 81(1): p. 011140.
32. Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica acta, 2000. 45(15-16): p. 2483-2498.
33. Merrill, D.R., M. Bikson, and J.G. Jefferys, Electrical stimulation of excitable tissue: design of efficacious and safe protocols. Journal of neuroscience methods, 2005. 141(2): p. 171-198.
34. Robblee, L., et al., Electrical stimulation with Pt electrodes. VII. Dissolution of Pt electrodes during electrical stimulation of the cat cerebral cortex. Journal of neuroscience methods, 1983. 9(4): p. 301-308.
35. Lu, Y., et al., Activated iridium oxide films fabricated by asymmetric pulses for electrical neural microstimulation and recording. Electrochemistry communications, 2008. 10(5): p. 778-782.
36. Comstock, D.J., et al., Synthesis of nanoporous activated iridium oxide films by anodized aluminum oxide templated atomic layer deposition. Electrochemistry Communications, 2010. 12(11): p. 1543-1546.
37. Cogan, S.F., et al., The influence of electrolyte composition on the in vitro charge-injection limits of activated iridium oxide (AIROF) stimulation electrodes. Journal of neural engineering, 2007. 4(2): p. 79.
38. Mozota, J. and B. Conway, Surface and bulk processes at oxidized iridium electrodes—I. Monolayer stage and transition to reversible multilayer oxide film behaviour. Electrochimica Acta, 1983. 28(1): p. 1-8.
39. Cogan, S.F., et al., Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes. IEEE Transactions on Biomedical Engineering, 2006. 53(2): p. 327-332.
40. Mattheiss, L., Electronic structure of ruo 2, oso 2, and iro 2. Physical Review B, 1976. 13(6): p. 2433.
41. Nishio, K., Y. Watanabe, and T. Tsuchiya, Preparation and properties of electrochromic iridium oxide thin film by sol-gel process. Thin Solid Films, 1999. 350(1-2): p. 96-100.
42. Lue, J.-C. and S. Chao, Fabrication and characterization of IrO2-based microsensors for fast detection of carbon dioxide. Japanese journal of applied physics, 1997. 36(4R): p. 2292.
43. Sakoda, T., et al., Hydrogen-robust submicron IrOx/Pb (Zr, Ti) O3/Ir capacitors for embedded ferroelectric memory. Japanese Journal of Applied Physics, 2001. 40(4S): p. 2911.
44. Weiland, J.D., D.J. Anderson, and M.S. Humayun, In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE transactions on biomedical engineering, 2002. 49(12): p. 1574-1579.
45. Thanawala, S., et al., A neural cell culture study on thin film electrode materials. Journal of Materials Science: Materials in Medicine, 2007. 18(9): p. 1745-1752.
46. Negi, S., et al., In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays. Biomedical materials, 2010. 5(1): p. 015007.
47. Wu, S., et al., Effect of deposition power and pressure on rate deposition and resistivity of titanium thin films grown by DC magnetron sputtering. Spectroscopy Letters, 2016. 49(8): p. 514-519.
48. Krupanidhi, S. and M. Sayer, Position and pressure effects in rf magnetron reactive sputter deposition of piezoelectric zinc oxide. Journal of applied physics, 1984. 56(11): p. 3308-3318.
49. Zhang, H., et al., Fabrication of iridium oxide neural electrodes at the wafer level. Science China Technological Sciences, 2016. 59(9): p. 1399-1406.
50. Thanawala, S.S., et al., Amorphous and crystalline IrO2 thin films as potential stimulation electrode coatings. Applied Surface Science, 2008. 254(16): p. 5164-5169.
論文全文使用權限:同意授權於2023-08-09起公開